
GothX: a generator of customizable,
legitimate and malicious IoT network traffic

Authors: POISSON Manuel
CARNIER Rodrigo, FUKUDA Kensuke

Full paper: https://inria.hal.science/hal-04629350
December, 2024, SuperviZ Workshop

https://inria.hal.science/hal-04629350

Implementation and architecture Use-cases Evaluation: scalability and reproductibility Conclusion

Introduction

Internet of Things (IoT)
increasing usage

MQTT and Kafka
IoT data

collection/processing

Defend IoT

Increase of attacks against IoT 1

⇒ Development of Intrusion Detection Systems (IDS) performing
anomaly detection using machine learning2

⇒ Need of datasets for training models

1Kolias et al. “DDoS in the IoT: Mirai and Other Botnets”. In: Computer 50.7 (2017), pp. 80–84
2Lahesoo et al. “SIURU: A Framework for Machine Learning Based Anomaly Detection in IoT Net-
work Traffic”. In: AINTEC ’23. Dec. 2023, pp. 87–95

2

Implementation and architecture Use-cases Evaluation: scalability and reproductibility Conclusion

Introduction

Expected properties of datasets

• Mix legitimate and malicious traffic
• Supervised training and validation ⇒ labels
• Robustness of IDS ⇒ diversity

• Detection of different attacks
• Avoid alerts when legitimate traffic varies

Get desired datasets

• Use publicly available dataset → single snapshot
• Generate own dataset:

• Develop own traffic generator → requires time and expertise
• Use existing traffic generator → difficult to find and not very flexible

3

Implementation and architecture Use-cases Evaluation: scalability and reproductibility Conclusion

Our contribution

GothX traffic generator

• IoT network traffic: MQTT and Kafka
• Generates labeled dataset
• Open-source and modifiable 3

Automatically executing a customizable scenario

• Legitimate actions
• Attacker complete kill chain from initial compromission to DDoS
• Customizable: study impact on IDS of various parameters (eXplainable AI)

Ready-to-use new datasets

• Provide datasets generated using GothX

3Software and datasets available at https://github.com/fukuda-lab/GothX
4

https://github.com/fukuda-lab/GothX

Implementation and architecture Use-cases Evaluation: scalability and reproductibility Conclusion

Related works

GothX: a fork of Gotham4

Gotham uses to emulate virtual networks

Features Gotham GothX
Open-source ✓ ✓
Legitimate + malicious traffic ✓ ✓
Virtualization (Docker + VM) ✓ ✓
Automatic network initialization ✓ ✓
Reproducible results ✓ ✓
Labeled data ✓
Customizable node behavior ✓
MQTT service ✓ ✓
MQTT-Kafka service ✓
Accompanying ready-made datasets ✓

GothX extends Gotham’s features and add new ones

4Saez-de-Camara et al. “Gotham Testbed: A Reproducible IoT Testbed for Security Experiments
and Dataset Generation”. In: IEEE Transactions on Dependable and Secure Computing PP (Jan.
2023), pp. 1–18

5

Implementation and architecture Use-cases Evaluation: scalability and reproductibility Conclusion

GothX architecture and workflow
GothX’s workflow

 create_topology
labelled

network flows

dataset

pcap files

 run_scenario
 config_topology

 config_scenario
 labelling

CICFlowMeter
 Dockerfiles

 VM disk image

create_templates

 configuration

 data creation

data

legend
initial installation

configuration

traffic generation labelling

1

2

3

4

pcap
files

GothX’s interaction with other tools

GNS3

G
o
th

X pcap files

CICFlowMeter

labelled network flows

Datasetnetwork flow

create topology

execute actions topology

1

2

3

4
labeling network

pcap files

 create_topology
labelled

network flows

dataset

pcap files

 run_scenario
 config_topology

 config_scenario
 labelling

CICFlowMeter
 Dockerfiles

 VM disk image

create_templates

 configuration

 data creation

data

legend
initial installation

configuration

traffic generation labelling

1

2

3

4

pcap
files

6

Implementation and architecture Use-cases Evaluation: scalability and reproductibility Conclusion

Customization

Benefits of customization

• Settings combinations ⇒ diversity of the network traffic
• Analyze the efficiency of anomaly detection when

legitimate traffic varies but the attack is the same, or vice-versa
• Variation of settings independently ⇒

study the impact of a specific parameter on a machine learning model (XAI)

Customizable topology and scenario parameters

Legitimate traffic Malicious traffic
Sensors count Parameters of attack tools
Messages rate* Intensity of DDoS attack

(periodic/random) (e.g. payload size)
(In)activity duration* % of compromised sensors

Which data, from a dataset Sleep time
of real sensors, is sent* between attack steps

Traffic volume (MQTT/Kafka)*

*customizable for each sensor independently
7

Implementation and architecture Use-cases Evaluation: scalability and reproductibility Conclusion

2 case examples

Case 1: MQTTSet reproduction

• Multiple MQTT behavior patterns
• 5 types of denial of service (DoS)

Case 2: Full, multi-step, attack scenario

• Legitimate MQTT and Kafka traffic
• Attacker spread in the network

(different techniques to take control of multiple nodes)
• DDoS

8

Implementation and architecture Use-cases Evaluation: scalability and reproductibility Conclusion

Case 1: MQTTSet reproduction

The MQTTSet dataset 5

Legitimate traffic
10 sensors publishing periodically or randomly

5 types of denial of service in MQTTSet

• 1 file with legitimate traffic only, 1 file per attack type
• Synthetic legitimate traffic (no real broker) ⇒ impossible to visualize DoS impact

Our contribution

Reproduction of MQTTSet: similar characteristics of legitimate and attack traffic.
GothX is more realistic: mix legitimate/malicious traffic

5Vaccari et al. “MQTTset, a New Dataset for Machine Learning Techniques on MQTT”. en. In:
Sensors 20.22 (Jan. 2020). Number: 22 Publisher: Multidisciplinary Digital Publishing Institute,
p. 6578

9

Implementation and architecture Use-cases Evaluation: scalability and reproductibility Conclusion

Case 2: Full scenario: topology

Assumptions

• Some IoT sensors with
SSH open ports

• kafka-connect
• version 7.3.1

(December 2022)
• enableUnsafe

Serialization=true
• ⇒ CVE-2023-25194

10

Implementation and architecture Use-cases Evaluation: scalability and reproductibility Conclusion

Case 2: Full scenario: attack steps

1. Attacker controls
connect-client

Internal attack:
device connect-client
sent legitimate
requests.
It starts to be
malicious.

11

Implementation and architecture Use-cases Evaluation: scalability and reproductibility Conclusion

Case 2: Full scenario: attack steps

1. Attacker controls
connect-client

2. Exploit
CVE-2023-25194 on
kafka-connect ⇒ RCE

3. Discover of devices
responding to SSH

4. Bruteforce SSH
credentials

5. Transfert payload
(via SSH)

6. Simultaneous payload
execution ⇒ DDoS

7. Target (MQTT Broker)
crash

11

Implementation and architecture Use-cases Evaluation: scalability and reproductibility Conclusion

Case 2: Full scenario: attack steps

1. Attacker controls
connect-client

2. Exploit
CVE-2023-25194 on
kafka-connect ⇒ RCE

3. Discover of devices
responding to SSH

4. Bruteforce SSH
credentials

5. Transfert payload
(via SSH)

6. Simultaneous payload
execution ⇒ DDoS

7. Target (MQTT Broker)
crash

11

Implementation and architecture Use-cases Evaluation: scalability and reproductibility Conclusion

Case 2: Full scenario: attack steps

1. Attacker controls
connect-client

2. Exploit
CVE-2023-25194 on
kafka-connect ⇒ RCE

3. Discover of devices
responding to SSH

4. Bruteforce SSH
credentials

5. Transfert payload
(via SSH)

6. Simultaneous payload
execution ⇒ DDoS

7. Target (MQTT Broker)
crash

11

Implementation and architecture Use-cases Evaluation: scalability and reproductibility Conclusion

Case 2: Full scenario: attack steps

1. Attacker controls
connect-client

2. Exploit
CVE-2023-25194 on
kafka-connect ⇒ RCE

3. Discover of devices
responding to SSH

4. Bruteforce SSH
credentials

5. Transfert payload
(via SSH)

6. Simultaneous payload
execution ⇒ DDoS

7. Target (MQTT Broker)
crash

11

Implementation and architecture Use-cases Evaluation: scalability and reproductibility Conclusion

Case 2: Full scenario: attack steps

1. Attacker controls
connect-client

2. Exploit
CVE-2023-25194 on
kafka-connect ⇒ RCE

3. Discover of devices
responding to SSH

4. Bruteforce SSH
credentials

5. Transfert payload
(via SSH)

6. Simultaneous payload
execution ⇒ DDoS

7. Target (MQTT Broker)
crash

11

Implementation and architecture Use-cases Evaluation: scalability and reproductibility Conclusion

Case 2: Full scenario: DDoS analysis

DDoS impact:
Inter-arrival time
of ACK-packets
during scenario

800 1000 1200 1400 1600 1800
0.0

2.5

5.0

7.5

IoT sensor A

800 1000 1200 1400 1600 1800
0

10

20

IoT sensor B

800 1000 1200 1400 1600 1800
0

20

40
in

te
r-a

rri
va

l t
im

e
AC

K-
pa

ck
et

s (
in

 se
c.

)

IoT sensor C

800 1000 1200 1400 1600 1800
0

50

100

IoT sensor D

800 1000 1200 1400 1600 1800
0

5

10

IoT sensor E
 (attacker)

800 1000 1200 1400 1600 1800
time since scenario start (in sec.)

0

50

100

IoT sensor F
 (attacker)

12

Implementation and architecture Use-cases Evaluation: scalability and reproductibility Conclusion

Case 2: Full scenario: DDoS analysis

DDoS impact:
Inter-arrival time
of ACK-packets
during scenario

Before DDoS

800 1000 1200 1400 1600 1800
0.0

2.5

5.0

7.5

IoT sensor A

800 1000 1200 1400 1600 1800
0

10

20

IoT sensor B

800 1000 1200 1400 1600 1800
0

20

40
in

te
r-a

rri
va

l t
im

e
AC

K-
pa

ck
et

s (
in

 se
c.

)

IoT sensor C

800 1000 1200 1400 1600 1800
0

50

100

IoT sensor D

800 1000 1200 1400 1600 1800
0

5

10

IoT sensor E
 (attacker)

800 1000 1200 1400 1600 1800
time since scenario start (in sec.)

0

50

100

IoT sensor F
 (attacker)

12

Implementation and architecture Use-cases Evaluation: scalability and reproductibility Conclusion

Case 2: Full scenario: DDoS analysis

DDoS impact:
Inter-arrival time
of ACK-packets
during scenario

Before DDoS
During DDoS

800 1000 1200 1400 1600 1800
0.0

2.5

5.0

7.5

IoT sensor A

800 1000 1200 1400 1600 1800
0

10

20

IoT sensor B

800 1000 1200 1400 1600 1800
0

20

40
in

te
r-a

rri
va

l t
im

e
AC

K-
pa

ck
et

s (
in

 se
c.

)

IoT sensor C

800 1000 1200 1400 1600 1800
0

50

100

IoT sensor D

800 1000 1200 1400 1600 1800
0

5

10

IoT sensor E
 (attacker)

800 1000 1200 1400 1600 1800
time since scenario start (in sec.)

0

50

100

IoT sensor F
 (attacker)

12

Implementation and architecture Use-cases Evaluation: scalability and reproductibility Conclusion

Case 2: Full scenario: DDoS analysis

DDoS impact:
Inter-arrival time
of ACK-packets
during scenario

Before DDoS
During DDoS
After DDoS

800 1000 1200 1400 1600 1800
0.0

2.5

5.0

7.5

IoT sensor A

800 1000 1200 1400 1600 1800
0

10

20

IoT sensor B

800 1000 1200 1400 1600 1800
0

20

40
in

te
r-a

rri
va

l t
im

e
AC

K-
pa

ck
et

s (
in

 se
c.

)

IoT sensor C

800 1000 1200 1400 1600 1800
0

50

100

IoT sensor D

800 1000 1200 1400 1600 1800
0

5

10

IoT sensor E
 (attacker)

800 1000 1200 1400 1600 1800
time since scenario start (in sec.)

0

50

100

IoT sensor F
 (attacker)

12

Implementation and architecture Use-cases Evaluation: scalability and reproductibility Conclusion

Case 2: Full scenario: provided dataset

pcap files and details

• All generated traffic captured
3 pcap files mixing legitimate and malicious actions (like in real world network traffic)

• Text file describing configuration and command line executed

TCP flows labelling

1. Automatic flows’ features extraction with CICFlowMeter6

2. Attack steps labelling adaptative to customization with provided custom script

Usage of variations of this dataset

Atsuya et al. “Dynamic Fixed-point Values in eBPF: a Case for Fully In-kernel
Anomaly Detection”. In: AINTEC ’24. Aug. 2024, p. 8

6https://github.com/GintsEngelen/CICFlowMeter

13

https://github.com/GintsEngelen/CICFlowMeter

Implementation and architecture Use-cases Evaluation: scalability and reproductibility Conclusion

GothX scalability and replication

Scalability

Definition: more IoT devices running simultaneously →
• Hardware ressources:

• RAM: 20GB for 450 sensors
• CPU: depends on DDoS intensity

• Realism:
• do not simply duplicate sensors with exactly the same behavior
• use customization to send different data for each sensor

• Execution time:
• data generation: fully customizable, depends on scenario duration
• topology deployment: 4 VM and 498 Docker containers →≈ 26 minutes

Replication

✓ public source code and documentation
✓ GothX’s installation and usage on different computers using documentation
✓ Executions with the same configuration ⇒ Generation of similar datasets 14

Implementation and architecture Use-cases Evaluation: scalability and reproductibility Conclusion

Conclusion

Delivery of the traffic generator GothX
• Open-source7

• Customizable
Producing IoT network datasets

• Labeled
• Legitimate and malicious traffic

Delivery of 2 datasets
1. MQTTSet reproduced
2. New dataset on ≈ 14h from our

customizable multi–steps scenario

Customizable full (attack) scenario
• Legitimate

MQTT and Kafka messages
• Exploitation of recent, highly critical

vulnerability (CVE-2023-25194)
• Ports scan and

credentials bruteforce
• DDoS

7 Software and datasets available at https://github.com/fukuda-lab/GothX

8Ivan Vaccari, Maurizio Aiello, and Enrico Cambiaso. “SlowITe, a Novel Denial of Service Attack
Affecting MQTT”. In: Sensors 20 (May 2020), p. 2932

15

https://github.com/fukuda-lab/GothX

Implementation and architecture Use-cases Evaluation: scalability and reproductibility Conclusion

Details on the attack

CVE-2023-25194

CVE-2023-25194 exploitation

Type of DDoS

SlowITe8: exhaust the number of simultaneous connections to the broker
Using tool mqttsa

8Ivan Vaccari, Maurizio Aiello, and Enrico Cambiaso. “SlowITe, a Novel Denial of Service Attack
Affecting MQTT”. In: Sensors 20 (May 2020), p. 2932

15

Implementation and architecture Use-cases Evaluation: scalability and reproductibility Conclusion

Attacks in MQTTSet

Attack type Tool
Flood DoS MQTT-malaria
MQTT publish flood (CVE-2018-1684) IoT-Flock
SlowITe SlowTT
Maleformed data MQTTSA
Authentication bruteforce MQTTSA

8Ivan Vaccari, Maurizio Aiello, and Enrico Cambiaso. “SlowITe, a Novel Denial of Service Attack
Affecting MQTT”. In: Sensors 20 (May 2020), p. 2932

15

Implementation and architecture Use-cases Evaluation: scalability and reproductibility Conclusion

Example of a configuration

8Ivan Vaccari, Maurizio Aiello, and Enrico Cambiaso. “SlowITe, a Novel Denial of Service Attack
Affecting MQTT”. In: Sensors 20 (May 2020), p. 2932

15

	Implementation and architecture
	Use-cases
	Evaluation: scalability and reproductibility
	Conclusion

