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• Proactive methods: valuable alternative 

to reactive methods aiming to anticipate 

attacks before they happen

• Several technologies already exist, mainly 

for the generation of attack graphs (Fig. 1)

• Drawbacks:

o Requires algorithms to run on top of the attack 

graphs

o Regeneration when network changes

o Requires full information of the network

[1] D. Tayouri, N. Baum, A. Shabtai, and R. Puzis, “A Survey of MulVAL Extensions and Their Attack Scenarios Coverage.” arXiv, Aug. 11, 2022. Accessed: May 29, 2024. [Online]. Available: http://arxiv.org/abs/2208.05750

Fig.1: Evolution of attack graph generation methods (red) as well as attack graph representations (blue): 
publication year and number of citations [1]

Introduction

http://arxiv.org/abs/2208.05750
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• Machine Learning (ML) solution to approximate the 

attacker strategy

• Best candidate: Reinforcement Learning (RL)

• Learning occurs via trial and error

• Advantages:

o Agent works as prioritization algorithm itself

o Environment can change during execution

o Agent can work with partial observability

• Deep RL: neural networks to approximate the agent



RL Environment

22/03/2025 3

• Why simulations? Real-world training is costly

• Target Environment: Microsoft CyberBattleSim [2]

[2] Team., M.D.R.: Cyberbattlesim (2021), created by Seifert C., Betser M., Blum W., Bono J., Farris K., 

Goren E., Grana J., Holsheimer K., Marken B., Neil J., Nichols N., Parikh J., Wei H.
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• Why simulations? Real-world training is costly

• Target Environment: Microsoft CyberBattleSim [2] 

• States: Graph representation of the network

• Actions: (Source node, Target node, Vulnerability)

• Reward: Linear function of outcomes

[2] Team., M.D.R.: Cyberbattlesim (2021), created by Seifert C., Betser M., Blum W., Bono J., Farris K., 

Goren E., Grana J., Holsheimer K., Marken B., Neil J., Nichols N., Parikh J., Wei H.
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1. More realistic simulation environment: Close the sim-to-real gap

2.   Generalizable & scalable RL agents for the task

o Achieve independence from application graph and vulnerability set

o Achieve invariance from their size and ordering

3.   Improved RL training & evaluation framework 

Goal: Learn from simulation and deploy in real-world scenarios
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• Environment realism affects the patterns the agent learns

• Previous issues:

o Random scattering of vulnerabilities in nodes and across the environment

o Vulnerability set is typically fictitious and small

o E.g. Original CyberBattleSim scenarios include <= 10 vulnerabilities each
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• General Agent Formulation:

• Key Principle: Generalizable observation & action spaces → Generalizable agents

• Goal: Learn mappings in spaces independent from graph and vulnerability set
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Global Agent

• Dependence on 

graph structure

• Dependence on the 

vulnerability set V

• Global optimization

Local Agent [3]

• No dependence on 

graph structure

• Dependence on the 

vulnerability set V

• Local optimization

[3] Franco Terranova, Abdelkader Lahmadi, and Isabelle Chrisment. 2024. Leveraging Deep Reinforcement Learning for Cyber-Attack Paths Prediction: Formulation, Generalization, and Evaluation. In Proceedings of the 27th International 
Symposium on Research in Attacks, Intrusions and Defenses (RAID '24). Association for Computing Machinery, New York, NY, USA, 1–16. https://doi.org/10.1145/3678890.3678902
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Global Agent

• Dependence on 

graph structure

• Dependence on the 

vulnerability set V

• Global optimization

Local Agent [2]

• No dependence on 

graph structure

• Dependence on the 

vulnerability set V

• Local optimization

Continuous Agent

• No dependence on 

graph structure

• No dependence on 

the vulnerability set V

• Global optimization

[2] Franco Terranova, Abdelkader Lahmadi, and Isabelle Chrisment. 2024. Leveraging Deep Reinforcement Learning for Cyber-Attack Paths Prediction: Formulation, Generalization, and Evaluation. In Proceedings of the 27th International 
Symposium on Research in Attacks, Intrusions and Defenses (RAID '24). Association for Computing Machinery, New York, NY, USA, 1–16. https://doi.org/10.1145/3678890.3678902
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1. More realistic simulation environment: Close the sim-to-real gap

2.   Generalizable & scalable RL agents for the task

o Achieve independence from application graph and vulnerability set

o Achieve invariance from their size and ordering

3.   Improved RL training & evaluation framework 

o Domain randomization: training & evaluation on large set of different scenarios 

o Starter node randomization

o Complexity scenario set splitting in training, validation, and test sets



Experimental Benchmark

22/03/2025 13

• Parameterized Reward Function:

• Experimental Benchmark:

o Threat Models/Goals: Control, Discovery, Disruption 

o Environment database: 172 service versions, 829 unique vulnerabilities

o RL Libraries: StableBaselines3 algorithms + RLiable for evaluation
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Results:

• 7.4x improvement wrt local approach

• 11.2x improvement wrt global approach

Settings:

• 300 syntethic scenarios

• Hyper-optimized best RL 

algorithm
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Results:

• TRPO as the outperforming algorithm for generalization

• 89% test-to-training generalization ratio

Settings:

• 500 syntethic scenarios

• Hyper-optimized version of each 

RL algorithm
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• Scenario set: scenarios built from real-world 

and emulated-scan

• TRPO algorithm retrained vs only synthetic

• Heuristics maximizing Impact and 

Exploitability Scores

• Results:

o Outperforming heuristics on control and 

discovery games

o 75% synthetic-to-retrained agent score
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• Environment Realism: Data Scraping, Scenario Generation, Automated Outcome 

Mapping

• Agent Reformulation: Learning in Continuous Invariant Spaces

• Improvements: Scalability (avg. 9.3×) and Generalization (avg. 89%)

• Training and Evaluation Pipeline for more generalizable agents

• Future Work

• Competitive Multi-Agent RL: Secure Virtual Machine Placement (in collaboration 

with University of Waterloo)

• Upcoming Release: C-CyberBattleSim on GitHub
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• Context: Virtualized networked system with a starting allocation of Virtual Machines 

(VMs) on top of Physical Machines (PMs)

• Attacker: Find vulnerability paths inside the current allocation

• Defender: Reconfigures the allocation to decrease the paths and trade-off with other 

performance objectives

o Action Space: (VM, PM, Isolation Level)

• Turn-Based Security Stackelberg Game(TBSSG) with competitive agents

• At convergence, the defender agent will aim for a reconfiguration strategy of the 

environment



Q&A Session

https://www.linkedin.com/groups/12732443/
https://www.instagram.com/gouvernementfr/
https://mobile.twitter.com/BrunoBonnellOff
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Local Agent
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Scenario Generation Pipeline
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TRPO Scores per Split and Goal
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Embedding spaces
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Graph Auto-Encoder
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Automated Outcome Mapping
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Dynamic Events Study
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Environment Pipeline
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