

Discovering Critical Vulnerability Paths with RL Agents: Enhancing Generalization and Scalability

Franco Terranova - Ph.D. Student¹

Under the supervision of Abdelkader Lahmadi¹ and Isabelle Chrisment¹ SuperVIZ Meeting - Campus Cyber La Défense, Paris, France 11/03/2025

¹Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France

Introduction

 Proactive methods: valuable alternative to reactive methods aiming to anticipate attacks before they happen

Introduction

- Proactive methods: valuable alternative to reactive methods aiming to anticipate attacks before they happen
- Several technologies already exist, mainly for the generation of attack graphs (Fig. 1)
- Drawbacks:
 - Requires algorithms to run on top of the attack graphs
 - $\circ~$ Regeneration when network changes
 - $\circ~\mbox{Requires full information of the network}$

Fig.1: Evolution of attack graph generation methods (red) as well as attack graph representations (blue): publication year and number of citations [1]

[1] D. Tayouri, N. Baum, A. Shabtai, and R. Puzis, "A Survey of MulVAL Extensions and Their Attack Scenarios Coverage." arXiv, Aug. 11, 2022. Accessed: May 29, 2024. [Online]. Available: http://arxiv.org/abs/2208.05750

- Machine Learning (ML) solution to approximate the attacker strategy
- **Best candidate:** Reinforcement Learning (RL)

- Machine Learning (ML) solution to approximate the attacker strategy
- Best candidate: Reinforcement Learning (RL)
- Learning occurs via trial and error

- Machine Learning (ML) solution to approximate the attacker strategy
- Best candidate: Reinforcement Learning (RL)
- Learning occurs via trial and error
- Advantages:
 - o Agent works as prioritization algorithm itself
 - Environment can change during execution
 - o Agent can work with partial observability

- Machine Learning (ML) solution to approximate the attacker strategy
- Best candidate: Reinforcement Learning (RL)
- Learning occurs via trial and error
- Advantages:
 - o Agent works as prioritization algorithm itself
 - o Environment can change during execution
 - o Agent can work with partial observability
- Deep RL: neural networks to approximate the agent

RL Environment

- Why **simulations**? Real-world training is costly
- Target Environment: Microsoft CyberBattleSim [2]

[2] Team., M.D.R.: Cyberbattlesim (2021), created by Seifert C., Betser M., Blum W., Bono J., Farris K., Goren E., Grana J., Holsheimer K., Marken B., Neil J., Nichols N., Parikh J., Wei H.

microsoft/ CyberBattleSim

An experimentation and research platform to investigate the interaction of automated agents in an abstract simulated network environments. R 11 ⊙ 11 ☆ 2k v 261 Contributors Issues Stars Forks

0

RL Environment

- Why simulations? Real-world training is costly
- Target Environment: Microsoft CyberBattleSim [2]
- **States**: Graph representation of the network
- Actions: (Source node, Target node, Vulnerability)
- **Reward**: Linear function of outcomes

[2] Team., M.D.R.: Cyberbattlesim (2021), created by Seifert C., Betser M., Blum W., Bono J., Farris K., Goren E., Grana J., Holsheimer K., Marken B., Neil J., Nichols N., Parikh J., Wei H.

microsoft/ **CyberBattleSim**

An experimentation and research platform to investigate the interaction of automated agents in an abstract simulated network environments. At 11 \bigcirc 11 \bigcirc 2k V 261 Contributors Issues Stars Forks

0

CyberBattleSim Episode

Contributions

- 1. More realistic simulation environment: Close the sim-to-real gap
- 2. Generalizable & scalable RL agents for the task
 - o Achieve independence from application graph and vulnerability set
 - Achieve invariance from their size and ordering
- 3. Improved RL training & evaluation framework

Goal: Learn from simulation and deploy in real-world scenarios

C1: Environment Realism

- Environment realism affects the patterns the agent learns
- Previous issues:
 - o Random scattering of vulnerabilities in nodes and across the environment
 - Vulnerability set is typically fictitious and small
 - E.g. Original CyberBattleSim scenarios include <= 10 vulnerabilities each

1. Shodan Scraping:

- Use customizable query to gather statistics
- Determine service set and allocation frequency
- 2. Use NVD to gather vulnerabilities
- 3. Scenario Generation:
 - Use graph parameters, cyberterrain parameters, and statistics for allocation

1. Shodan Scraping:

- Use customizable query to gather statistics
- Determine service set and allocation frequency
- 2. Use NVD to gather vulnerabilities
- 3. Scenario Generation:
 - Use graph parameters, cyberterrain parameters, and statistics for allocation

1. Shodan Scraping:

- Use customizable query to gather statistics
- Determine service set and allocation frequency
- 2. Use NVD to gather vulnerabilities

3. Scenario Generation:

 Use graph parameters, cyberterrain parameters, and statistics for allocation

C1: Automated Outcome Mapping

- What limited vulnerability set integration?
 - Need to define outcomes to simulate for each vulnerability of the simulation environment

C1: Automated Outcome Mapping

- What limited vulnerability set integration?
 - Need to define outcomes to simulate for each vulnerability of the simulation environment
- Automate outcome mapping using multi-label classifier:

 $f_{\text{multi-label}}(vulnerability \ description) \rightarrow Outcomes$

• Fine-tuned Language Models (LMs) to this aim

C1: Automated Outcome Mapping

- What limited vulnerability set integration?
 - Need to define outcomes to simulate for each vulnerability of the simulation environment
- Automate outcome mapping using multi-label classifier:

 $f_{\text{multi-label}}(vulnerability \ description) \rightarrow Outcomes$

• Fine-tuned Language Models (LMs) to this aim

• General Agent Formulation:

 $\pi_{\text{general}}: \quad graph \ encoding \to (source, \ target, \ vulnerability)$ such that $\max_{\pi} \mathbb{E}_{\tau \sim \pi} \left[Impact(\text{Path } \tau \mid \text{Goal, InitialConditions}) \right]$

• General Agent Formulation:

 $\pi_{\text{general}}: \quad graph \ encoding \to (source, \ target, \ vulnerability)$ such that $\max_{\pi} \mathbb{E}_{\tau \sim \pi} \left[Impact(\text{Path } \tau \mid \text{Goal, InitialConditions}) \right]$

- Key Principle: Generalizable observation & action spaces \rightarrow Generalizable agents
- **Goal:** Learn mappings in spaces independent from graph and vulnerability set

Global Agent

 $\pi_{\text{global}}: \mathbb{R}^{N \times f} \to \mathbb{R}^{N \times N \times |V|}$

- Dependence on graph structure
- Dependence on the vulnerability set V
- Global optimization

Global Agent

 $\pi_{\text{global}}: \mathbb{R}^{N \times f} \to \mathbb{R}^{N \times N \times |V|}$

- Dependence on graph structure
- Dependence on the vulnerability set V
- Global optimization

Local Agent [3]

 $\pi_{\text{local}}: \mathbb{R}^{2 \times f + g} \to \mathbb{R}^{|V| + |S|}$

- No dependence on graph structure
- Dependence on the vulnerability set V
- Local optimization

[3] Franco Terranova, Abdelkader Lahmadi, and Isabelle Chrisment. 2024. Leveraging Deep Reinforcement Learning for Cyber-Attack Paths Prediction: Formulation, Generalization, and Evaluation. In Proceedings of the 27th International Symposium on Research in Attacks, Intrusions and Defenses (RAID '24). Association for Computing Machinery, New York, NY, USA, 1–16. https://doi.org/10.1145/3678890.3678902

Global Agent

 $\pi_{\text{global}}: \mathbb{R}^{N \times f} \to \mathbb{R}^{N \times N \times |V|}$

- Dependence on graph structure
- Dependence on the vulnerability set V
- Global optimization

Local Agent [2]

 $\pi_{\text{local}}: \mathbb{R}^{2 \times f + g} \to \mathbb{R}^{|V| + |S|}$

- No dependence on graph structure
- Dependence on the vulnerability set V
- Local optimization

Continuous Agent

 $\pi_{continuous}$: $\mathbb{R}^p \to \mathbb{R}^{p+p+q}$

- No dependence on graph structure
- No dependence on the vulnerability set V
- Global optimization

[2] Franco Terranova, Abdelkader Lahmadi, and Isabelle Chrisment. 2024. Leveraging Deep Reinforcement Learning for Cyber-Attack Paths Prediction: Formulation, Generalization, and Evaluation. In Proceedings of the 27th International Symposium on Research in Attacks, Intrusions and Defenses (RAID '24). Association for Computing Machinery, New York, NY, USA, 1–16. https://doi.org/10.1145/3678890.3678902

Contributions

- 1. More realistic simulation environment: Close the sim-to-real gap
- 2. Generalizable & scalable RL agents for the task
 - o Achieve independence from application graph and vulnerability set
 - Achieve invariance from their size and ordering
- 3. Improved RL training & evaluation framework
 - **Domain randomization:** training & evaluation on large set of different scenarios
 - Starter node randomization
 - **Complexity** scenario set **splitting** in training, validation, and test sets

Experimental Benchmark

• Parameterized Reward Function:

$$R(o, a) = B(o, a, Goal) - \sum_{i=1}^{|Penalties|} P_i(o, a, Goal)$$

- Experimental Benchmark:
 - o Threat Models/Goals: Control, Discovery, Disruption
 - o Environment database: 172 service versions, 829 unique vulnerabilities
 - **RL Libraries:** StableBaselines3 algorithms + RLiable for evaluation

Scalability

Scalability

Generalization

Scores' AUC Surfaces

Generalization

Scores' AUC Surfaces

Results:

- TRPO as the outperforming algorithm for generalization
- 89% test-to-training generalization ratio

Deployment

• Scenario set: scenarios built from real-world and emulated-scan

Deployment

- Scenario set: scenarios built from real-world and emulated-scan
- TRPO algorithm retrained vs only synthetic ٠
- Heuristics maximizing Impact and ٠ **Exploitability Scores**

#

Deployment

- Scenario set: scenarios built from real-world and emulated-scan
- TRPO algorithm retrained vs only synthetic
- Heuristics maximizing Impact and Exploitability Scores
- Results:
 - Outperforming heuristics on control and discovery games
 - o 75% synthetic-to-retrained agent score

Conclusions

- Environment Realism: Data Scraping, Scenario Generation, Automated Outcome Mapping
- Agent Reformulation: Learning in Continuous Invariant Spaces
 - Improvements: Scalability (avg. 9.3×) and Generalization (avg. 89%)
- Training and Evaluation Pipeline for more generalizable agents
- Future Work
 - **Competitive Multi-Agent RL:** Secure Virtual Machine Placement (in collaboration with University of Waterloo)
 - Upcoming Release: C-CyberBattleSim on GitHub

Secure Virtual Machine Placement with MARL

• **Context:** Virtualized networked system with a starting allocation of Virtual Machines (VMs) on top of Physical Machines (PMs)

Secure Virtual Machine Placement with MARL

- **Context:** Virtualized networked system with a starting allocation of Virtual Machines (VMs) on top of Physical Machines (PMs)
- Attacker: Find vulnerability paths inside the current allocation
- **Defender:** Reconfigures the allocation to decrease the paths and trade-off with other performance objectives

o Action Space: (VM, PM, Isolation Level)

Secure Virtual Machine Placement with MARL

- **Context:** Virtualized networked system with a starting allocation of Virtual Machines (VMs) on top of Physical Machines (PMs)
- Attacker: Find vulnerability paths inside the current allocation
- **Defender:** Reconfigures the allocation to decrease the paths and trade-off with other performance objectives

• Action Space: (VM, PM, Isolation Level)

- Turn-Based Security Stackelberg Game(TBSSG) with competitive agents
- At convergence, the defender agent will aim for a reconfiguration strategy of the environment

Liberté Égalité Fraternité

PROGRAMME DE RECHERCHE

CYBERSÉCURITÉ

Q&A Session

Backup

Pipeline

Local Agent

Scenario Generation Pipeline

TRPO Scores per Split and Goal

Embedding spaces

 $f_{\text{GAE}}(\text{feature vector} \in \mathbb{R}^{f}, \mathcal{G}) \to \text{embedding}_{\text{node}} \in \mathbb{R}^{p}$ $\text{POOL}(\{\text{embedding}_{\text{node}_{i}} \in \mathbb{R}^{p}\}_{i \in \{1, \dots, N\}}) \to \text{embedding}_{\text{graph}} \in \mathbb{R}^{p}$ $f_{\text{LM}}(\text{vulnerability description}) \to \text{embedding}_{\text{vulnerability}} \in \mathbb{R}^{q}$ $f_{\text{one-hot}}(o \in O) \to \text{embedding}_{\text{outcome}} \in \mathbb{R}^{|O|}$

Graph Auto-Encoder

Automated Outcome Mapping

Dynamic Events Study

Environment Pipeline

