

Towards automated network intrusion response

Thomas MARCHIORO

March 11, 2025

Context: SIGMO-IDS

- SIGMO-IDS: Unsupervised (anomaly-based) network IDS, runs on a host and monitors network interfaces
 - Similar to Kitsune
- Detection pipeline:

Context: SIGMO-IDS

SIGMO-IDS: Training/inference workflow

- **Training**: Autoencoder learns to predict normal traffic
- Calibration: calculate a threshold based on distances between the predicted network traffic and the actual observed traffic
- Training and calibration are performed using data collected from the monitored network interfaces

From intrusion detection to intrusion response

NO VER

- You are an L1 SOC analyst, going through your SIEM alerts
- You receive a sequence of alerts from the new top-tier AI NIDS with < 0.01% FPR

timestamp	src ip	src port	dst ip	dst port	protocol	 score	label
556172725	192.168.1.30	42966	52.59.177.21	80	tcp	 0.99	anomaly
1556173067	192.168.1.31	50266	18.184.104.180	80	tcp	 0.95	anomaly
1556173461	192.168.1.31	34532	18.184.104.180	80	tcp	 0.63	anomaly
1556173488	192.168.1.31	35706	18.184.104.180	80	tcp	 0.68	anomaly
1556340863	192.168.1.32	59874	18.194.169.124	80	tcp	 0.81	anomaly
1556340869	192.168.1.32	50204	18.194.169.124	80	tcp	 0.84	anomaly
1556340880	192.168.1.32	58430	18.194.169.124	80	tcp	 0.98	anomaly
1556340887	192.168.1.32	42504	52.28.231.150	80	tcp	 0.69	anomaly
1556340895	192.168.1.32	45016	176.28.50.165	80	tcp	 0.73	anomaly
1556548974	192.168.1.34	11	74.125.109.8	-	icmp	 0.78	anomaly

• What do you do? (a) Inspect everything manually (b) Turn off the NIDS (c) Change job

State of the art of intrusion response

Industry:

- Signature-based attack trace (e.g., with Sigma rules) works for specific CVEs / tactics
- Aggregation of security events (e.g., counts of insecure protocols, expired certificates)
- Playbooks often not followed because too case-specific or company-specific¹

Countless hours of manual inspection needed \rightarrow Alert fatigue

Academia:

- Explanation-oriented attack graphs²
- Action-oriented game theory, MDP/RL³

Open problem: lack of benchmarks / standardized evaluation

³lannucci S, et al. A performance evaluation of deep reinforcement learning for model-based intrusion response. 2019 IEEE FAS*W.

¹Schlette D et al. Do you play it by the books? A study on incident response playbooks and influencing factors. 2024 IEEE Symposium on Security and Privacy (SP).

²Rose JR et al. IDERES: Intrusion detection and response system using machine learning and attack graphs. 2022 Journal of Systems Architecture

Intrusion response: Desiderata

Desirable properties for an intrusion response system:

- General: Apply to different scenarios (intranet, cloud, SCADA, industrial IoT)
- Actionable: Information should translate to practical actions
- Verifiable: Proposed responses should be easy to understand and verify
- Measurable: Should be easily comparable to other solutions

What we can learn from **network intrusion detection systems** (NIDS)⁴:

- \blacksquare Most attacks happen on a network \rightarrow act at the network level
- \blacksquare NIDS can be deployed to virtually any network \rightarrow deploy at the network entrypoints
- \blacksquare NIDS can be "easily" compared \rightarrow use standard benchmark datasets / testbeds
- \rightarrow Can we design "network intrusion response systems"?

⁴Apruzzese G et al. Sok: Pragmatic assessment of machine learning for network intrusion detection. In 2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P).

Introducing NIRS

• Network intrusion response systems (NIRS): IRS based on firewall rules

NIRS: Properties

- General: Pretty much any internal network is behind a firewall
- Actionable: Firewall rule update is simple and effective
- Verifiable: Firewall rules (e.g., iptables) have a very simple syntax
- **Measurable**: Can measure false positives (benign traffic accidentally blocked) and false negatives (malicious traffic that went through) → Can test on public NIDS datasets (CIC-IDS-2017, NB15, GTCS, etc.)

Limitation: Covers only traffic external \leftrightarrow internal. If an attacker has already compromised a host on the internal network and is performing lateral movement, that cannot be directly handled by the NIRS.

Aggregating NIDS alerts to generate firewall rules

■ Idea 1: use an incremental window for alerts

- The window starts when a first alert is received
- It expands while new alerts are being raised
- It stops expanding when no alert is received within a time period ΔT_{idle}
- Create a set of rules to block the alerts included in the window

Aggregating NIDS alerts to generate firewall rules

- Idea 2: use an incremental window for alerts and a sliding window for benign traffic
- Create a set of rules to block the alerts included in the window and does not block benign traffic
 - Challenge: rules matching both benign traffic and alerts

NIRS baseline

Proposed baseline: atomic rules for blocking traffic (using iptables) based on either of these patterns

- Source IP:
 - -A INPUT -s \$SRC_IP -j DROP
- Destination IP and port:
 - -A INPUT -p \$PROTOCOL -d \$SRC_IP --dport \$DST_PORT -j DROP
- Destination IP and protocol:
 - -A INPUT -d \$SRC_IP -p \$PROTOCOL -j DROP
- Specific connection:
 - -A INPUT -p \$PROTOCOL -s \$SRC_IP --sport \$SRC_PORT -d \$DST_IP -j DROP

A **ruleset** iteratively is chosen to match the max amount of alerts in the alert window and $\leq \epsilon$ fraction of the benign window, with $0 \leq \epsilon \leq 1$

NIRS baseline: Results with ideal IDS

Results for $\epsilon = 0$, $\Delta T_{idle} = 60s$, $\Delta T_{benign} = 1h$ on CIC-IDS-2017 and TON-IoT

Note: TON-IoT has balanced benign and malicious flows but more diverse IPs for the attackers; in CIC-IDS-2017, all attacks come from the same IP address space 2025/03/11 12/18

NIRS baseline: Results with ideal IDS

Increasing tolerance to $\epsilon = 0.1$

How to do better than the baseline?

Intuition: creating non-trivial iptables rules requires

- **Pattern recognition**: finding patterns in the alert and benign data
- Knowledge: prioritizing one rule over another based on common attack patterns (e.g., for DDoS you do not want to block individual source IP addresses)
- Context: knowing the role of some of the hosts in the network (e.g., you typically don't want to block port 443 of your web server)

Good candidate for advancing NIRS: Retrieval-Augmented Generation (RAG)

- **Pattern recognition** \rightarrow AI/LLMs are great at that
- Knowledge \rightarrow Retrieval from knowledge database
- \blacksquare Context \rightarrow Partial or complete context can be inserted in the prompt

Preliminary experiments

First step: benchmark LLMs on valid iptables rule generation Setup:

- Local Ollama deployment
- "Small" sized models (≤8b parameters)
- Prevent random outcomes → seed 42, temperature 0, context window 2048
- Prompt model to generate rules given context (alerts and benign from random windows)

Preliminary results: amount of valid rulesets out of 100 example

- deepseek-r1:8b 0%, complete misunderstanding of the prompt
- 11ama3:8b 97%
- mistral:7b "0%", wrong response format
- qwen2.5:7b 98%

Conclusions

Recap:

- Firewall-based NIRS are simple and actionable
- Even baselines perform relatively well
- Easy to build on top of them (add knowledge, add context)
- Limited to ext↔int connections

Planned work:

- Better NIRS benchmarking \rightarrow Looking forward to discussing this
- \blacksquare Simple RAG \rightarrow Use examples from previous correct generations and/or atomic rules to fill a vector DB
- Better RAG infrastructure → rule validation with knowledge + context

Thank you! Questions?

CEA SACLAY 91 191 Gif-sur-Yvette Cedex France thomas.marchioro@cea.fr

Backup: Examples of rules produced by LLMs

Valid rules:

- Ilama3: 8b: -A INPUT -s 172.16.0.1/32 -p tcp --dport 80 -j DROP
- qwen2.5:7b: -A INPUT -s 172.16.0.0/16 -d 192.168.10.0/24 -p tcp --dport 80 -m state --state NEW -j DROP

Invalid rules:

- Ilama3: 8b: -A INPUT -s 172.16.0.1/32 -p tcp --dport 1056:139 -j DROP
- qwen2.5:7b: -A INPUT -p tcp --sport 5000:65535 --dport 728-65535 -j DROP

NY YYY