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Context

NIDS Dataset Quality Matters

NIDS Construction and Evaluation

▶ Effective ML-based NIDS depends on high-quality datasets [1, 2]

Existing datasets suffer from label errors, bias, low diversity [3, 4]

Overfitting risk: Flawed datasets reduce model generalization to
real-world scenarios
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Motivation

Why Measure Diversity?

Unmeasured dataset diversity: Its effect on performance,
generalization, and robustness remains unclear/unmeasured.

”Bad Design Smells”: Existing studies highlight poor data diversity
as a key issue in NIDS datasets [3]

Quantification gap: Lack of structured measurement method of
diversity tailored for NIDS datasets
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Approach

Research Questions:

1 Systematic Measurement Framework: How to systematically
measure NIDS data diversity?

2 Bio-diversity Inspired NIDS Data Diversity : How to leverage
ecological diversity measures for NIDS data diversity
quantification?

3 NIDS Diversity and ML-based NIDS Performance: How does NIDS
data diversity impact ML-based NIDS performance and
generalization?
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Diversity Concept: Ecology Inspirations [5]
Domain A Domain B

Main Diversity Characteristics:

Richness: number of ’species’
▶ D(A) = 3.0 vs. D(B) = 3.0

Relative abundance (evenness)

▶ D(A) = 3.0 vs. D(B) = 2.28

Similarity between species
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Diversity Measure: True Diversity vs. Diversity Index [8, 9]

Generalized Dq Framework: Diversity of Order (q)

Dq =

(
S∑

i=1

pqi

) 1
1−q

=

(
S∑

i=1

pi ∗ pq−1
i

) 1
1−q

where q controls sensitivity to rare vs. dominant species

Key Diversity Indices:

Species Richness (D0): Counts distinct entities (e.g., species)

Shannon Entropy (D1): Measures uncertainty in species distribution

Gini-Simpson Index (D2): Probability that two randomly selected
samples belong to different species

Rao’s Quadratic Entropy (D2): Captures similarity between species

ML SoA: Vendi Score (Dq) - Uses sample similarity and eigenvalues to
quantify diversity [6, 7]
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Network Traffic Categorization

Network Traffic Dimensions

Behavioral

Unknown Behaviors e.g., New User Activity, New Attack Vector

Recognized Attack Patterns e.g., Port Scanning, Brute Force, DoS, DDoS

Known Behaviors e.g., Web Browsing, Data Transfer

Protocol-Level

Unknown Protocols e.g., Proprietary Protocols, New Software

Known Protocols e.g., TCP, UDP, ICMP, HTTP, HTTPS, SSH

Key Features for Traffic Categorization:

Dst Port, Protocol

Flow Duration, Flow IAT Mean, TotLen Fwd Pkts, Pkt Size Avg,
Flow Byts/s, Flow Pkts/s, Down/Up Ratio

Clustering to identify traffic species → profiling

Related works: [10] [11] [12]
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Initial Experiments on CICIDS 2018 subset (100k samples)
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Initial Experiments on CICIDS 2018 subset (100k samples)
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(b) D0 and D1 - Vendi Score

Diversity measurement depends strongly on how we define clusters
(species)
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Key Insights & Future Directions
Main Takeaways:

NIDS Dataset Quality Matters:
How does dataset diversity influence ML-based NIDS performance
and generalization?

Bio-inspired Diversity Metrics:
Adapting ecological diversity measures (Dq and Vendi Score) for
evaluating NIDS dataset diversity

Challenges & Future Work:

Reliability and validity of the proposed diversity metrics

Bridging diversity measures to ML performance: Evaluating how
diversity influences model generalization

Integrating diversity into dataset lifecycle: creation, curation,
evaluation

Thank you for your attention!
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