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Problem Space-constrained Adversarial Attack 
against Graph-based Intrusion Detection
• Why Graph-based Intrusion Detection ?
• Graph provides a structural representation of cyber attack behaviour 

A survey on graph neural networks for intrusion detection 
systems: Methods, trends and challenges, Computer & 
Security, Vol.141, June 2024



Problem Space-constrained Adversarial Attack 
against Graph-based Intrusion Detection
• Target: Flow Graph based representation of network traffics 



Problem Space-constrained Adversarial Attack 
against Graph-based Intrusion Detection
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Problem Space-constrained Adversarial Attack 
against Graph-based Intrusion Detection
• A few words about Graph-Sage based GNN models

GNN = A Recurrent Message Passing 
Process across K-hop neighbours 



Problem Space-constrained Adversarial Attack 
against Graph-based Intrusion Detection
• What is an adversarial attack ? 



Problem Space-constrained Adversarial Attack 
against Graph-based Intrusion Detection
• An adversarial attack against Graph Neural Network-based models



Problem Space-constrained Adversarial Attack 
against Graph-based Intrusion Detection
• What is the problem space constraint ? 
• Any change to the input graph should not break the attack / normal 

traffic flows 
• An attack is still an attack

• Any change to the input graph should be made consistent with the 
deployed communication protocols 
• In the end, any change to the input graph should be made 

compatiable with the profiles of real traffic flows between IP 
addresses. 



Problem Space-constrained Adversarial Attack 
against Graph-based Intrusion Detection
• An example of problem-space adversarial attacks 

IP Address A

IP Address B

IP Address C

IP Address D

A spoofed IP adress C1 

A spoofed IP adress C2 

Target benign traffic flow Problem-space constrant:

Edge addition: An attacker can send traffic 
flows from a spoofed IP address to an IP 
address existing in the raw traffic records.  

What edges to add: The added traffic flows 
should be added in a way consistent with the 
communication protocol, such as TCP-IP



Problem Space-constrained Adversarial Attack 
against Graph-based Intrusion Detection
• Mathematical nature of the edge-moification-based adversarial 

attacks

B. Threat model

Building on insights from adversarial attacks on GNNs, we
define a threat model for a NIDS scenario with a realism con-
straint for adversarial manipulation. The attacker is assumed to
have access to one endpoint, as in [25], [27], enabling traffic
sniffing to identify other endpoints and analyze benign and
malicious statistical patterns. The attacker knows the target
NIDS uses a GNN model with a flow-graph representation
and has access to the underlying graph and loss function,
enabling evaluation of the loss after adversarial modifications.
From their controlled endpoints, the attacker can initiate new
communications, effectively adding edges to the corresponding
flow-graph. For this study, the attacker’s objective is to in-
crease the False Positive Rate (FPR) by misclassifying benign
network flows as malicious, inducing alarm fatigue. While this
specific goal is the focus of our current work, other objectives
will be explored in future studies. To achieve this, the attacker
considers all places where an edge can be added, computes
the impact of each edge addition and actually adds the ones
with the highest impact. With this description, the adversarial
sample is thus the set of added edges. The adversarial attack
by adding new edges into the graph is formulated as a discrete
optimisation problem on the flow graph G = {A,X,E}, with
A the adjacency matrix X the node features and E the edge
features of the flow graph G.

A⇤ = arg max
A0

`(M(A
0
,X,E,Y ))

s.t. kA�A
0
kL0  2b

(1)

where M is the target GNN-based NIDS model, which takes
the adjacency matrix along with node and edge features as
inputs. The output of M is the class prediction logits. ` is
the cross-entropy learning loss used to train the NIDS model
differentiating edges of benign flows from those of malicious
flows. A

0
denotes the modified adjacency matrix after the

attacker injects new edges. k · kL0 denotes the L0-norm based
difference between the original and adversarially modified
adjacency matrix (twice the number of added edges). We set
a limit to the attacker that no more than b edges can be added,
a.k.a the attack budget. In the case of activating excessively
high FPR, Y denotes the true class label assigned to the benign
flows in the flow graph. Maximizing the learning objective in
Eq.1 aims to trigger the misclassification over benign flows as
much as possible, activating false alarms. When the flow graph
is undirected, under the Lipschitz-continuity conditions [28]
over the GNN model, the attack objective given in Eq.1 can be
considered as a �-weakly sub-modular optimization problem
for 0  �  1

b . According to our prior work [29], we are
guaranteed to reach the convergence of a local optimum of the
attack objective function by adding new edges using a Greedy
Search algorithm (GS) algorithm within the polynomial time
complexity [29]. In parallel, the gap between the underlying
global optimum of Eq.1 and the obtained local optimum
solution by Greedy Search (GS) has a tight upper bound and
remains marginally small in practice. In summary, we ensure

the success of the attack by adopting the Forward Stepwise
GS-based edge addition attack.

C. Greedy search-based attack method

1) Unconstrained adversarial attacks: The first step
demonstrates the feasibility of the attack: adding a few edges
to a flow graph G can increase the FPR. The method follows
a greedy strategy [29] as described by Algorithm 1:

Algorithm 1: Unconstrained Adversarial Attack
Input: Original flow graph G = {A,X,E}, attack

budget b, target model M, loss function `
Output: Modified flow graph G0 = {A0,X,E0}

1 Initialize A0  A, E0  E;
2 for i 1 to b do

3 max loss �1;
4 for each controlled node u in G do

5 for each possible destination node v 6= u do

6 Simulate adding edge (u, v) to A0, with
corresponding edge features E0

(u,v);
7 Compute loss:

current loss `(M(A0,X,E0),Y );
8 if current loss > max loss then

9 max loss current loss;
10 best edge (u, v);

11 Add best edge to A0, update E0 with its features;

12 return G0 = {A0,X,E0};

While effective, this approach lacks problem-space compat-
ibility with real-world network communication.

2) Problem-space constrained adversarial attacks: The
second step aims to increase the realism of the adversarial at-
tack by integrating the problem space constraint while adding
the edges via the Greedy Search-based attack. The flow graph’s
communication type restricts possible edge choices, ensuring
protocol compliance. For example, TCP edges should match
features corresponding to backward packets, such as the num-
ber of backward packets. At this stage, a complete definition
of normal traffic is still under development. However, since for
evaluation, we are using network flows present in a dataset, we
assume that these flows were valid when they existed. Thus,
their feature distributions are likely to be close to those found
in the real network. The greedy search is modified to consider
only destination nodes that comply with these constraints,
ensuring realistic and valid adversarial examples.

IV. EXPERIMENTS

A. Datasets

We conducted experiments using the BoT-IoT [30] dataset
containing millions of network flows described by 46 fea-
tures and labeled into 6 attack types. The dataset is widely
used for benchmarking ML-based NIDS. Future work will
extend to other datasets like NF-BoT-IoT and NF-CSE-CIC-
IDS2018 [31]. Preprocessing includes using IP addresses and

B. Threat model

Building on insights from adversarial attacks on GNNs, we
define a threat model for a NIDS scenario with a realism con-
straint for adversarial manipulation. The attacker is assumed to
have access to one endpoint, as in [25], [27], enabling traffic
sniffing to identify other endpoints and analyze benign and
malicious statistical patterns. The attacker knows the target
NIDS uses a GNN model with a flow-graph representation
and has access to the underlying graph and loss function,
enabling evaluation of the loss after adversarial modifications.
From their controlled endpoints, the attacker can initiate new
communications, effectively adding edges to the corresponding
flow-graph. For this study, the attacker’s objective is to in-
crease the False Positive Rate (FPR) by misclassifying benign
network flows as malicious, inducing alarm fatigue. While this
specific goal is the focus of our current work, other objectives
will be explored in future studies. To achieve this, the attacker
considers all places where an edge can be added, computes
the impact of each edge addition and actually adds the ones
with the highest impact. With this description, the adversarial
sample is thus the set of added edges. The adversarial attack
by adding new edges into the graph is formulated as a discrete
optimisation problem on the flow graph G = {A,X,E}, with
A the adjacency matrix X the node features and E the edge
features of the flow graph G.

A⇤ = arg max
A0

`(M(A
0
,X,E,Y ))

s.t. kA�A
0
kL0  2b

(1)

where M is the target GNN-based NIDS model, which takes
the adjacency matrix along with node and edge features as
inputs. The output of M is the class prediction logits. ` is
the cross-entropy learning loss used to train the NIDS model
differentiating edges of benign flows from those of malicious
flows. A

0
denotes the modified adjacency matrix after the

attacker injects new edges. k · kL0 denotes the L0-norm based
difference between the original and adversarially modified
adjacency matrix (twice the number of added edges). We set
a limit to the attacker that no more than b edges can be added,
a.k.a the attack budget. In the case of activating excessively
high FPR, Y denotes the true class label assigned to the benign
flows in the flow graph. Maximizing the learning objective in
Eq.1 aims to trigger the misclassification over benign flows as
much as possible, activating false alarms. When the flow graph
is undirected, under the Lipschitz-continuity conditions [28]
over the GNN model, the attack objective given in Eq.1 can be
considered as a �-weakly sub-modular optimization problem
for 0  �  1

b . According to our prior work [29], we are
guaranteed to reach the convergence of a local optimum of the
attack objective function by adding new edges using a Greedy
Search algorithm (GS) algorithm within the polynomial time
complexity [29]. In parallel, the gap between the underlying
global optimum of Eq.1 and the obtained local optimum
solution by Greedy Search (GS) has a tight upper bound and
remains marginally small in practice. In summary, we ensure

the success of the attack by adopting the Forward Stepwise
GS-based edge addition attack.

C. Greedy search-based attack method

1) Unconstrained adversarial attacks: The first step
demonstrates the feasibility of the attack: adding a few edges
to a flow graph G can increase the FPR. The method follows
a greedy strategy [29] as described by Algorithm 1:

Algorithm 1: Unconstrained Adversarial Attack
Input: Original flow graph G = {A,X,E}, attack

budget b, target model M, loss function `
Output: Modified flow graph G0 = {A0,X,E0}

1 Initialize A0  A, E0  E;
2 for i 1 to b do

3 max loss �1;
4 for each controlled node u in G do

5 for each possible destination node v 6= u do

6 Simulate adding edge (u, v) to A0, with
corresponding edge features E0

(u,v);
7 Compute loss:

current loss `(M(A0,X,E0),Y );
8 if current loss > max loss then

9 max loss current loss;
10 best edge (u, v);

11 Add best edge to A0, update E0 with its features;

12 return G0 = {A0,X,E0};

While effective, this approach lacks problem-space compat-
ibility with real-world network communication.

2) Problem-space constrained adversarial attacks: The
second step aims to increase the realism of the adversarial at-
tack by integrating the problem space constraint while adding
the edges via the Greedy Search-based attack. The flow graph’s
communication type restricts possible edge choices, ensuring
protocol compliance. For example, TCP edges should match
features corresponding to backward packets, such as the num-
ber of backward packets. At this stage, a complete definition
of normal traffic is still under development. However, since for
evaluation, we are using network flows present in a dataset, we
assume that these flows were valid when they existed. Thus,
their feature distributions are likely to be close to those found
in the real network. The greedy search is modified to consider
only destination nodes that comply with these constraints,
ensuring realistic and valid adversarial examples.

IV. EXPERIMENTS

A. Datasets

We conducted experiments using the BoT-IoT [30] dataset
containing millions of network flows described by 46 fea-
tures and labeled into 6 attack types. The dataset is widely
used for benchmarking ML-based NIDS. Future work will
extend to other datasets like NF-BoT-IoT and NF-CSE-CIC-
IDS2018 [31]. Preprocessing includes using IP addresses and

Adjacency 
matrix 

Node 
attributes

Edge 
attributes



Problem Space-constrained Adversarial Attack 
against Graph-based Intrusion Detection
• Every GNN is vulnerable to edge modification-based adversarial 

attacks
of a given graph. It is intrinsically a problem of submodular function
maximization. [29] introduces additional positiveness constraint
over the CNN and RNN based classi�er’s parameters. The resultant
classi�ers are proven to be submodular. A greedy search based
attack method is then used to select the targeted words/sentences
and replace them with feasible candidates.

Despite of the e�ectiveness, the use of submodular function is
limited, especially in adversarial learning research. The objective
functions adopted in practices usually deviate from strict submod-
ularity. In this case, greedy search can perform arbitrarily poorly
in general. Besides, enforcing the submodularity constraint on the
targeted classi�ers introduces artefacts into the classi�ers’ archi-
tectures and limits the model choice. It can cause degradation of
classi�cation utility. Therefore, such attack model is still far from
the adversarial threat of real-world practices. Recent research e�orts
break the hurdle by introducing W-weakly submodular functions
[9, 11]. Submodularity ratio W measures the distance of the function
from being strictly submodular. The standard greedy algorithm
achieves a graceful approximation ratio of 1 � 4�W for the problem
of maximizing such functions subject to a cardinality constraint.

It is a brand new problem to shape evasion attack on discrete data
with weak submodularity theory. Intuitively, weak submodularity
can broaden the choice of the targeted classi�er for feasible attacks,
which helps to de�ne more realistic adversarial threat scenarios.
Nevertheless, it is unclear how to design a weakly submodular
objective function for the attack. The celebrated work by [13] sets
up an equivalence between the smoothness and strongly concavity
of log-likelihood objective functions and its weak submodularity in
a feature subset selection problem. Inspired by this work, we reveal
that the evasion attack can be formulated as a problem of weakly
submodular function maximization, if the targeted classi�er follows
even less strict regularity constraints. We argue that enforcing
strong concavity over the classi�er is not obliged to guarantee
weak submodularity. We further characterize the attackability of
evasion attack given the regularity of the targeted classi�er.

3 ATTACKABILITY ANALYSIS
We use x = {G1, G2, G3, ..., G=} to represent an instance with = dis-
crete features. Each G8 is a cell of< (< � 1) categorical attributes.
For example, an G8 can be a code segment in a malware �le asso-
ciated with one unique function or a medical examination output
linked to the< di�erent biological characteristics of human body. In
practice, we cast each categorical attribute value to a⇡-dimensional
pre-trained embedding vector, e.g., e9 2 '⇡ , 9 = 1, 2, ...,<.

To represent instance x by the embedding vectors of its at-
tribute values, we introduce binary variables b = {1 98 }, 8=1, 2, ...,=,
9=1, 2, ...,<, where 1 98 = 1 when the 9-th attribute value is selected
for G8 , and 1

9
8 = 0 otherwise. One instance x encoded by the em-

bedding vectors can then be represented as an '=⇤<⇤⇡ tensor with
x{8, 9,:} = 1

9
8 4

9
8 .

We use b̂ = {1̂ 98 } as the adversarially tuned variable modi�ed
from b. If no modi�cation, 1̂ 98 = 1 98 . Otherwise, 1̂

9
8 < 1 98 . Depend-

ing on the type of attacks to implement, e.g., insertion, deletion or
substitution, 1̂ 98 can have di�erent values. Insertion is to let 1̂ 98 = 1,
given 1 98 = 0, 89 = 1, ...,<. Deletion is to let 1̂ 98 = 0, given 1 98 = 1.

Substitution is to let 1̂ 98 = 1, 1̂ 9
0

8 = 0, given 1 98 = 0, 1 9
0

8 = 1, 9 < 9 0. A
modi�ed instance x̂ can thus be written as x̂{8, 9,:} = 1̂

9
8 4

9
8 .

Let y be the target class label of the evasion attack. The goal
is to make 5~ (x̂) deviate from 5~ (x) = 0. In other words, we aim
at maximizing 5~ (x̂), so that x is modi�ed to get y assigned to it.
The evasion attack task can then be formulated as a process of set
function optimization, de�ned as

(⇤ = argmax
|( | 

6 (()

where 6 (() = max
;⇢(

5~ (x̂), ; = di� (b, b̂)
(1)

where |( | is the cardinality of set ( . Function 6(() is a set function
measuring themaximum extent towhich the attacks in ( can change
the classi�cation result. The di� function reports the set of the
indices where b and b̂ are di�erent. In other words, ; denotes the set
of modi�cation to make for attacking x. To preserve data integrity,
the modi�cation made on b̂ should be as small as possible (|( |   ).

Obviously 6(() is a non-decreasing monotone set function as
6(()  6() ) if ( ✓ ) . By solving Eq. (1), we pursue to �nd the
optimal set of adversarial discrete attribute modi�cation, including
adding, deleting and replacing values of discrete attributes in the
original data instance.

3.1 Weak Submodularity Based Solvability
Conditions

To solve the attack problem in Eq.(1), we �rst evaluate its solvabil-
ity conditions based on weak submodularity [11]: we require the
attack objective to be weakly submodular and show it can be
solved approximately with polynomial complexity given this con-
straint. We introduce submodularity ratio [11] to measure the
attackability of the evasion attack problem de�ned by Eq.(1). For a
weakly-submodular attack objective, the higher the submodularity
ratio is, the better attack solution we can obtain via maximizing
the attack objective, while the less constraints we need to enforce
over the classi�cation model.

We elaborate our solution by �rst introducing the de�nition of
weak submodularity and submodularity ratio.

D��������� 1. Given a set cardinality threshold : � 1, the sub-
modularity ratio W: of a set function 6(.) w.r.t. a set � is:,

W: = <8=
(✓� ,�:|�|:,(\�=;

Õ
02� 6 (( [ 0) � 6 (()
6 (( [�) � 6 (() (2)

If W = <8=
:

W: < 1, the set function 6(() is weakly submodular.

Otherwise, 6(() is submodular when W � 1 for any ( .
We de�ne the regularization constraint over the classi�cation

function 5~ by extending Restricted Strong Convexity (RSC) in The-
orem.1 of [13] to apply to non-concave functions. It guarantees
further weak submodularity of the attack objective of broader
classes of function forms.

D��������� 2. Let ⌦ = (G,~), G,~ 2 '= and ✓ : '=!' be a con-
tinuously di�erentiable function. A function 5 is (<⌦,"⌦)-bounded
on ⌦, if for any (G,~) 2 ⌦,<⌦ 2 ' and"⌦ 2 '+:

5 (~) � 5 (G) � hr5 (G), ~ � G i � �"⌦

2
k~ � G k22

5 (~) � 5 (G) � hr5 (G), ~ � G i  �<⌦

2
k~ � G k22

(3)
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This is in nature a weakly-submodular function maximization problem , which can be 
solved with Greedy Search with a polynormal complexity.
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against Graph-based Intrusion Detection

B. Threat model

Building on insights from adversarial attacks on GNNs, we
define a threat model for a NIDS scenario with a realism con-
straint for adversarial manipulation. The attacker is assumed to
have access to one endpoint, as in [25], [27], enabling traffic
sniffing to identify other endpoints and analyze benign and
malicious statistical patterns. The attacker knows the target
NIDS uses a GNN model with a flow-graph representation
and has access to the underlying graph and loss function,
enabling evaluation of the loss after adversarial modifications.
From their controlled endpoints, the attacker can initiate new
communications, effectively adding edges to the corresponding
flow-graph. For this study, the attacker’s objective is to in-
crease the False Positive Rate (FPR) by misclassifying benign
network flows as malicious, inducing alarm fatigue. While this
specific goal is the focus of our current work, other objectives
will be explored in future studies. To achieve this, the attacker
considers all places where an edge can be added, computes
the impact of each edge addition and actually adds the ones
with the highest impact. With this description, the adversarial
sample is thus the set of added edges. The adversarial attack
by adding new edges into the graph is formulated as a discrete
optimisation problem on the flow graph G = {A,X,E}, with
A the adjacency matrix X the node features and E the edge
features of the flow graph G.
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differentiating edges of benign flows from those of malicious
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0
denotes the modified adjacency matrix after the

attacker injects new edges. k · kL0 denotes the L0-norm based
difference between the original and adversarially modified
adjacency matrix (twice the number of added edges). We set
a limit to the attacker that no more than b edges can be added,
a.k.a the attack budget. In the case of activating excessively
high FPR, Y denotes the true class label assigned to the benign
flows in the flow graph. Maximizing the learning objective in
Eq.1 aims to trigger the misclassification over benign flows as
much as possible, activating false alarms. When the flow graph
is undirected, under the Lipschitz-continuity conditions [28]
over the GNN model, the attack objective given in Eq.1 can be
considered as a �-weakly sub-modular optimization problem
for 0  �  1

b . According to our prior work [29], we are
guaranteed to reach the convergence of a local optimum of the
attack objective function by adding new edges using a Greedy
Search algorithm (GS) algorithm within the polynomial time
complexity [29]. In parallel, the gap between the underlying
global optimum of Eq.1 and the obtained local optimum
solution by Greedy Search (GS) has a tight upper bound and
remains marginally small in practice. In summary, we ensure

the success of the attack by adopting the Forward Stepwise
GS-based edge addition attack.

C. Greedy search-based attack method

1) Unconstrained adversarial attacks: The first step
demonstrates the feasibility of the attack: adding a few edges
to a flow graph G can increase the FPR. The method follows
a greedy strategy [29] as described by Algorithm 1:

Algorithm 1: Unconstrained Adversarial Attack
Input: Original flow graph G = {A,X,E}, attack

budget b, target model M, loss function `
Output: Modified flow graph G0 = {A0,X,E0}

1 Initialize A0  A, E0  E;
2 for i 1 to b do

3 max loss �1;
4 for each controlled node u in G do

5 for each possible destination node v 6= u do

6 Simulate adding edge (u, v) to A0, with
corresponding edge features E0

(u,v);
7 Compute loss:

current loss `(M(A0,X,E0),Y );
8 if current loss > max loss then

9 max loss current loss;
10 best edge (u, v);

11 Add best edge to A0, update E0 with its features;

12 return G0 = {A0,X,E0};

While effective, this approach lacks problem-space compat-
ibility with real-world network communication.

2) Problem-space constrained adversarial attacks: The
second step aims to increase the realism of the adversarial at-
tack by integrating the problem space constraint while adding
the edges via the Greedy Search-based attack. The flow graph’s
communication type restricts possible edge choices, ensuring
protocol compliance. For example, TCP edges should match
features corresponding to backward packets, such as the num-
ber of backward packets. At this stage, a complete definition
of normal traffic is still under development. However, since for
evaluation, we are using network flows present in a dataset, we
assume that these flows were valid when they existed. Thus,
their feature distributions are likely to be close to those found
in the real network. The greedy search is modified to consider
only destination nodes that comply with these constraints,
ensuring realistic and valid adversarial examples.

IV. EXPERIMENTS

A. Datasets

We conducted experiments using the BoT-IoT [30] dataset
containing millions of network flows described by 46 fea-
tures and labeled into 6 attack types. The dataset is widely
used for benchmarking ML-based NIDS. Future work will
extend to other datasets like NF-BoT-IoT and NF-CSE-CIC-
IDS2018 [31]. Preprocessing includes using IP addresses and

port numbers as node identifiers, one-hot encoding categorical
features, and a non-shuffled 80/20 train-test split to avoid time
snooping [32].

B. GNN

For this preliminary study, we employed the E-
GraphSAGE [26] model as the GNN-NIDS. As in the
original paper, E-GraphSAGE is built with output dimension
128, ReLU activation, 0.2 dropout rate, and trained over
8,000 epochs using Adam [33] with learning rate 0.001.
Class weights address imbalance using scikit-learn’s
compute_class_weight.

C. Results

We report our preliminary results after performing a greedy
search strategy for edge addition. Recall that a destination node
is chosen in order to increase the model’s loss. As shown in
Figure 1, the model loss rises with the addition of edges. The
increase of the learning loss is steep when we add the first
few edges, but then becomes much smoother and converges
to a stable value after approximately 10 edges are added. This
confirms the weakly sub-modular nature of the adversarial
attack problem.

Fig. 1. Loss (BCE) evolution function of the number of added edges.

Table I presents the weighted classification report of the
E-GraphSAGE model on a clean graph, before any attack.

Class Precision Recall F1-Score Support
0 (benign) 0.93 0.98 0.95 1,375
1 (malicious) 0.98 0.92 0.95 58,635
Accuracy 0.89 60,010
Macro avg 0.89 0.89 0.89 60,010
Weighted avg 0.89 0.89 0.89 60,010

TABLE I
WEIGHTED CLASSIFICATION REPORT ON THE CLEAN GRAPH.

Class Precision Recall F1-Score Support
0 (benign) 0.93 0.84 0.88 1,375
1 (malicious) 0.85 0.93 0.89 58,685
Accuracy 0.89
Macro avg 0.89 0.89 0.89 60,060
Weighted avg 0.89 0.89 0.89 60,060

TABLE II
WEIGHTED CLASSIFICATION REPORT AFTER 50 EDGES ADDITIONS.

Following 50 edges added in a row by the attacker, Table II
shows an increase of the FPR. This demonstrates even a small
number of adversarial edges can degrade model performance.

V. DISCUSSION AND FUTURE WORKS

This study evaluates GNN-based NIDS vulnerabilities to
FPR increasing adversarial attacks under realistic constraints.
The unconstrained method shows that even adding a relatively
small number of edges is sufficient to degrade the model
performance. This provides a lower bound for the model
weakness. The study reveals the dual nature of using GNN-
NIDS: while their structure benefits the defender, it is also
beneficial to the attacker. To understand these attacks, we
investigate the content and the location of injected network
flows. Preliminary results suggest injecting malicious network
flows toward benign hosts with a large amount of edges
connected is likely to trigger an increase in FPR. This aligns
with the fact that false alarms can be activated on benign
devices if the device receives traffic with malicious signatures,
such as suspicious port scan or requests containing suspicious
strings, yet without harmful payloads. As an extension, per-
forming evasion, i.e. triggering a false negative has yet to be
implemented. However, we can expect that, if the attacker’s
goal is to have a specific malicious edge to be classified as
benign, the attacker could change its predicted label by sending
a certain amount of benign edges beforehand. This is due to
the nature of Message Passing in GNN. Moreover with such
a goal, a new manipulation strategy might be investigated,
a replacement strategy. Additionally, we aim to automate
constraints construction, which is currently dataset-specific, to
apply adversarial attacks to a wider range of networks. While
the flow-graph representation is common, it is not the easiest to
work with, so future work will explore alternative graph data
representations, potentially involving heterogeneous structures.
We also consider the transferability of adversarial attacks
on graph structured network traffic representations towards
statistics-based NIDS [15], [16] and signature-based IDS [1].

VI. CONCLUSION

This paper explores the vulnerability of Graph Neural
Network based NIDS to adversarial attacks. For better realism,
the attack consists solely in edge additions corresponding
to adding new communications into the network. The un-
constrained approach demonstrates that minimal adversarial
perturbations are sufficient to impact the model performance.
These leverage a trade-off of the use of GNN between better
explainability for the defender and their exploitation by at-
tackers. Future work will focus on developing evasion attacks,
as well as studying the transferability of the attacks designed
on graph structured data. A key focus of future work will be
reducing the attacker’s assumed knowledge, which is currently
extensive.
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Problem Space-constrained Adversarial Attack 
against Graph-based Intrusion Detection
• Questions remaining to answer
• We focus on activating an excessively large fase alarm rate as the attack 

goal, but can we also generate evasive samples (increasing the false 
negative rate ?)
• Adding benign traffic flows targeting at one IP address in the dataset ? 

• Divide the raw network traffics according to their temporal orders. 
• Attackers add adversarial manipulations to historical data, while aiming to deliver 

adversarial attack impacts over future traffic flows
• The impact of the degree of the target IP address
• Transferability of the attack

• If an adversarial attack can mislead GNN-based intrusion detection systems, can it 
also mislead a flow-statistic based intrusion detection model (or not) ? 

• Think about other GNN models 



Problem Space-constrained Adversarial Attack 
against Graph-based Intrusion Detection
• Next step 
• Elevating both false alarm and false negative rate via attack
• Where to add edges and what edges to add ? 
• Transferable attacks across both the graph-based IDS and statistics-

based IDS 
• Publication plan:  
• Matthieu Mouzaoui at the second year of this thesis. 
• 2 papers submitted by the end of this year. 
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