
Superviz Plenary Meeting
WP4-PO4.1

Yufei Han @ INRIA PIRAT
March 11, 2025
@Campus Cyber

Robust and Transferable Learning for IDS

• What is the bottleneck for ML-based IDS
• Concept drift of attack behaviours: attackers may change attack techniques to

evade detection or exploit new attack surfaces

Robust and Transferable Learning for IDS

• What is the bottleneck for ML-based IDS
• Concept drift of attack behaviours: attackers may change attack techniques to

evade detection or exploit new attack surfaces

Robust and Transferable Learning for IDS

• Theoretically, every ML model has a significantly deteriorated
prediction accuracy over concept drifted inputs

Learning Transferable Features with Deep Adaptation Networks

∑

i′ J (θ (xa
i′) , y

a
i′), and {(xa

i′ , y
a
i′)} indicates the labeled

examples in quad-tuple zi—for instance, in unsupervised
adaptation where the target domain has no labeled data, we
have {(xa

i′ , y
a
i′)} = {(xs

2i−1, y
s
2i−1), (x

s
2i, y

s
2i)}. To per-

form a mini-batch update, we compute the gradient of ob-
jective (4) with respect to the "th layer parameter Θ! as

∇Θ! =
∂J (zi)

∂Θ!
+ λ

∂gk
(

z!i
)

∂Θ!
. (5)

Such a mini-batch SGD can be easily implemented within
the Caffe framework for CNNs (Jia et al., 2014). Given
kernel k as the linear combination of m Gaussian kernels

{ku (xi,xj) = e−‖xi−xj‖
2/γu}, the gradient

∂gk(z!i)
∂Θ! can

be readily computed using the chain rule. For instance,

∂k(hs!
2i−1,h

t!
2i)

∂W!
= −

m
∑

u=1

2βu

γu
ku

(

hs!
2i−1,h

t!
2i

)

×
(

hs!
2i−1 − ht!

2i

)

×
(

I

[

h
s(!−1)
2i−1

]

− I

[

h
t(!−1)
2i

])T

,

(6)

where the last row computes the gradient of the "th layer
rectifier units, with I being defined as an indicator such that
I
[

h!−1
ji

]

= h!−1
ji if W!

j·h
!−1
i +b!

j ! 0, else I
[

h!−1
ji

]

= 0.

Learning β The proposed multi-layer adaptation regular-
izer performs layerwise matching by MK-MMD, hence we
seek to learn optimal kernel parameter β for MK-MMD by
jointly maximizing the test power and minimizing the Type
II error (Gretton et al., 2012b), leading to the optimization

max
k∈K

d2k
(

D!
s,D

!
t

)

σ−2
k , (7)

where σ2
k = Ezg2k (z)− [Ezgk (z)]

2
is estimation variance.

Lettingd = (d1, d2, . . . , dm)T, each du is MMD via kernel
ku. Covariance Q = cov (gk) ∈ Rm×m can be computed

in O(m2n) cost, i.e. Quu′ = 4
ns

∑ns/4
i=1 g∆ku

(z̄i) g∆ku′
(z̄i),

where z̄i " (z2i−1, z2i) and g∆ku
(z̄i) " gku (z2i−1) −

gku (z2i). Hence (7) reduces to a quadratic program (QP),

min
dTβ=1,β!0

βT (Q+ εI)β, (8)

where ε = 10−3 is a small regularizer to make the prob-
lem well-defined. By solving (8), we obtain a multi-kernel
k =

∑m
u=1 βuku that jointly maximizes the test power and

minimizes the Type II error.

We note that the DAN objective (4) is essentially a minimax
problem; i.e., we compute min

Θ
max
K

d2k
(

D!
s,D

!
t

)

σ−2
k . The

CNN parameter Θ is learned by minimizing MK-MMD as
a domain discrepancy, while the MK-MMD parameter β is
learned by minimizing the Type II error. Both criteria are
dedicated to an effective adaptation of domain discrepancy,

aiming to consolidate the transferability of DAN features.
We accordingly adopt an alternating optimization that up-
dates Θ by mini-batch SGD (5) and β by QP (8) iteratively.
Both updates cost O(n) and are scalable to large datasets.

3.3. Analysis

We provide an analysis of the expected target-domain risk
of our approach, making use of the theory of domain adap-
tation (Ben-David et al., 2007; 2010; Mansour et al., 2009)
and the theory of kernel embedding of probability distribu-
tions (Sriperumbudur et al., 2009; Gretton et al., 2012a;b).

Theorem 1 Let θ ∈ H be a hypothesis, εs(θ) and εt(θ) be

the expected risks of source and target respectively, then

εt(θ) # εs(θ) + 2dk(p, q) + C, (9)

where C is a constant for the complexity of hypothesis

space and the risk of an ideal hypothesis for both domains.

Proof sketch: A result from Ben-David et al. (2007) shows
that εt(θ) # εs(θ) + dH(p, q) + C0, where dH(p, q) is the
H-divergence between p and q, which is defined as

dH(p, q) " 2 sup
η∈H

∣

∣

∣

∣

Pr
xs∼p

[η(xs) = 1]− Pr
xt∼q

[

η(xt) = 1
]

∣

∣

∣

∣

.

(10)
The H-divergence relies on the capacity of the hypothesis
space H to distinguish distributions p from q, and η ∈ H
can be viewed as a two-sample classifier. By choosing η as
a (kernel) Parzen window classifier (Sriperumbudur et al.,
2009), dH(p, q) can be bounded by the empirical estimate

dH(p, q) # d̂H(Ds,Dt) + C1

2

(

1− inf
η∈H

[

ns
∑

i=1

L[η(xs
i)=1]

ns
+

nt
∑

j=1

L[η(xt
j)=−1]
nt

])

+C1

= 2 (1 + dk(p, q)) + C1,
(11)

where L(·) is the linear loss function of the Parzen window
classifier η, L[η = 1] " −η, L[η = −1] " η. By explicitly
minimizing MK-MMD in multiple layers, the features and
classifier learned by the proposed DAN model can decrease
the upper bound on target risk. The source classifier and the
two-sample classifier together provide a way to assess the
adaptation performance, and can facilitate model selection.
Note that we maximize MK-MMD w.r.t. β (7) to minimize
Type II test error, and to help the Parzen window classifier
achieve minimal risk of two-sample discrimination in (11).

4. Experiments

We compare the DAN model to state-of-the-art transfer
learning and deep learning methods on both unsupervised
and semi-supervised adaptation problems, focusing on the
efficacy of multi-layer adaptation with multi-kernel MMD.

Michel. I. Jordan et al, Learning Transferable Features with Deep Adaption Networks, ICML 2015

Distribution gap between training and
testing data

Robust and Transferable Learning for IDS

• How to reach this goal ?

Robust and Transferable Learning for IDS

• Active Learning as a protocol for incrementally update the knoweldge
for network attack classification

Introduction DYNAMO Design Experiment Conclusion

Our Proposed Framework: DYNAMO VII

Pirat Seminar 11/34

Helene Orsini and Yufei Han, DYNAMO: Towards Network Attack Campaign Attribution via Density-
Aware Active Learning, https://hal-emse.ccsd.cnrs.fr/UNIV-UBS/hal-04877620v1

Robust and Transferable Learning for IDS

Introduction DYNAMO Design Experiment Conclusion

Nearest neighbor-based self-supervised feature encoding I

Raw feature vectors from Netflow : GraphSage method

µ§ =
arg min

µ
° 1

nK
Pn
i=1[

PK
k=1 log(æ(h

T
µ
(xi)hµ(x

NN ,k
i)))°∏P

j ,xv ›KNN(xi)
log(æ(°hT

µ
(xi)hµ(xv)))]

Pirat Seminar 19/34

Robust and Transferable Learning for IDS
Introduction DYNAMO Design Experiment Conclusion

Density-aware active learning I

Pirat Seminar 20/34

Robust and Transferable Learning for IDS

Introduction DYNAMO Design Experiment Conclusion

Unseen campaingn strategy I

Pu learning

Train a classifier to distinguish between positive and negative.

Learning phase: Positive and Unlabelled (only some of the positive examples
in the training data are labeled and none of the negative examples are)

gpu
¡ = arg min

¡

º
np

P
xi2S [`(g

pu
¡ (hµ(xi)),yi =+1)°`(gpu

¡ (hµ(xi)),yi =

°1)]+ 1
nu

P
xi2Xunlabeled `(g

pu
¡ (hµ(xi)),yi =°1)

Pirat Seminar 21/34

Robust and Transferable Learning for IDS

• Extended further to totally unsupervsied learning

Title Suppressed Due to Excessive Length 5

and when does it become significant enough to justify model retraining? These
challenges are particularly pronounced in unsupervised learning scenarios, where
the absence of labeled data makes model updates more complex.

Various strategies have been proposed to address different types of concept
drift. In [22], concept drift was categorized into five types: incremental, gradual,
recurrent, sudden, and blip. The CADE framework [23] addresses drift by identi-
fying samples that deviate from established behavior patterns. Using contrastive
learning, CADE compares sample pairs in a low-dimensional space, enabling ef-
fective unsupervised drift detection without requiring extensive labeled datasets.

Other approaches, like the DRIFT model [24], employ active learning to
mitigate the impact of drift. Meanwhile, the CONFRONT method [25] uses
sliding windows to detect distributional changes by segmenting data into old
and new blocks. Both methods provide unsupervised strategies for detecting
concept drift in network traffic, making them particularly valuable in scenarios
where labeled data is limited or unavailable.

3 The Framework of ABACUS

Fig. 1. The pipeline of Abacus feature extraction process

ABACUS aims to differentiate the strategies employed by various botnets
during the initial stages of compromise. Some bots may infiltrate a host by
exploiting weak credentials on a single service, such as SSH, while others may
target multiple services or connect to victim hosts through legacy protocols. Even
when a bot targets a single service or port, its repeated exploitation attempts
may reveal distinct patterns. ABACUS is designed to uncover these patterns to
differentiate between botnets.

To address this, ABACUS focuses on analyzing network traffic directed to-
wards a honeypot machine, enabling the attribution of attack behaviors to dif-
ferent botnets. Additionally, it monitors the evolution of network traffic flows
over time, identifying the emergence of new patterns. Central to this approach

6 Anonymous author

is a novel feature representation called Abascore, which encodes variations in
network traffic attributes. Abascore allows ABACUS to group similar traffic
patterns into clusters and detect changes in traffic behavior. The workflow of
ABACUS is depicted in Figure 1.

ABACUS derives sequential patterns from network traffic records collected
over intervals of x minutes. It uses a two-phase method to identify previously
unseen traffic patterns. In the first phase, it clusters network traffic flows ob-
served during prior intervals. The centroids of these clusters represent distinct
behavioral patterns and form a knowledge base for traffic flow analysis. These
centroids act as reference points to identify flows that deviate significantly, indi-
cating potential behavioral shifts. The knowledge base is periodically updated by
incorporating new centroids derived from emerging traffic patterns. This itera-
tive enrichment broadens the system’s understanding of diverse traffic behaviors
observed in real-world scenarios.

This design benefits botnet traffic flow analysis in two key ways. First, an ex-
tended knowledge base improves ABACUS’s accuracy in detecting shifted traffic
patterns, reducing the false positive rate for identifying anomalous behaviors.
Second, by summarizing historical traffic flows into centroids, ABACUS helps
analysts focus on representative patterns, tagging potentially malicious activi-
ties without having to manually inspect every traffic record. This streamlined
process allows ABACUS to link new traffic flows to known botnet behaviors.

In the second phase, ABACUS conducts anomaly detection at the centroid
level. Here, the most recent traffic flows are grouped into clusters, and their
centroids are compared against those in the existing knowledge base. If newly
formed centroids exhibit unique characteristics that were not observed before,
they signal the emergence of novel behavioral clusters. This two-phase approach
enables ABACUS to detect both isolated anomalous flows and broader trends
of behavioral drift, ensuring robust identification of dynamic changes.

Fig. 2. The pipeline of ABACUS feature extraction process

Title Suppressed Due to Excessive Length 13

Fig. 4. day by day centroids

Fig. 5. FPR and FNR of outlier detection

Robust and Transferable Learning for IDS

• Back to the question “How to reach a robust IDS facing concept drift
?”
• Can we predict the attack behaviour ?
• Natan Talon et al, SCWAD: Automated Pentesting of Web

Applications, https://inria.hal.science/hal-04874868v1/document

https://inria.hal.science/hal-04874868v1/document

Robust and Transferable Learning for IDS

Figure 1: Components of SCWAD and their interaction

able. Traditional black-box scanners aim to enumer-
ate all reachable pages and then fuzz input data, in-
cluding URL parameters, form values, and cookies,
to provoke vulnerabilities. In their evaluation of 11
black-box web vulnerability scanners, [Doupé et al.,
2010] emphasized the importance of deep crawling to
discover all vulnerabilities in an application. How-
ever, as noted in [Doupé et al., 2012], these scanners
ignore a key aspect of modern web applications: any

request can change the state of the web application.
Doupé et al’s work is credited with pioneering the
use of a state machine to guide state-aware fuzzing
of web applications, resulting in improved code cov-
erage compared to traditional scanners.

Finally, the security of web applications can be as-
sessed through pentest campaigns, which simulate at-
tacks to determine system security. Web pentesting is
typically conducted by human experts who manually
explore the application to identify vulnerabilities, of-
ten aided by one or more web application scanners. In
this context, measuring test coverage and reproducing
the test campaign can be challenging. In our study,
we echo to this challenge by proposing SCWAD as
an automated and customizable vulnerability explo-
ration tool. Security analyst/service owner of web ap-
plications can use SCWAD to provide a comprehen-
sive coverage of possible vulnerabilities, in order to
achieve an accurate vulnerability assessment. In the
next section, we describe our pentest’s modelisation.

3 SCWAD framework

We introduce SCWAD an autonomous pentesting
framework to spotlight vulnerabilities within web ap-
plications. SCWAD employs an attack-based assess-
ment strategy, simulating the role of an attacker. It
systematically explores potential vulnerabilities in a

given web application, exploiting identified weak-
nesses to trigger data breaches. Moreover, SCWAD
is equipped with the capability to register and replay
pentest campaigns.

SCWAD operates through three key components
that interact in a continuous loop.
Update knowledge base encompasses defining and
updating of a Knowledge Base specific to each web
application tested within SCWAD. This knowledge
base encapsulates insights gathered by a pentester
across multiple sessions, assuming various user roles
(see Section 3.1). Act on the app involves an au-
tomated Agent responsible for devising and execut-
ing pertinent actions on the web application. This
agent’s primary objective is to comprehensively ex-
plore the application, attempting simulated attacks,
and enriching the knowledge base as extensively as
possible (see Section 3.2). Check for new vulnera-

bilities is defined by introducing a Verifier, which is
tasked with confirming the presence of vulnerabilities
within a web application (see Section 3.4). SCWAD’s
Agent and Verifier may require expert knowledge to
either build relevant actions or look for specific events
while checking vulnerabilities. These expert knowl-
edge are provided on query by the last component of
SCWAD, the Oracle (see Section 3.2). The SCWAD
process unfolds in structured rounds, with successive
calls to the Agent, Knowledge Base update, and Veri-
fier, as illustrated in Figure 1.

3.1 SCWAD Knowledge Base

In SCWAD, the knowledge base of a web application
stores in a structured format all information gathered
by SCWAD about the application.

A web application is represented by an IP address
or a domain name, enabling the identification of the
web application’s location and by the collection of in-
formation obtained while acting in various user roles
within the application. Each user u is further de-
scribed by:
u.login: Its user name
u.credentials. Its credentials for the application.
u.cookies. Its set of cookies, separated into active or
not.
u.pages. The pages already visited by the user and
those to which he/she knows a link. The record
pages provides details about the content of all of these
pages. A page is modeled in the database though the
web application’s path, the HTTP methods, headers,
and parameters used to access the page and the code
of the page, offering information about its interactive
elements such as clickable buttons, HTML forms, and
more. A page must have its path defined. However,

Command Parameters Expected behavior on the Web application
AccessWebPage u: url change current page for the current user
SendHttpForm x: xpath , input: dict { key:

value }
send the form identified by x and filled with input to
the web application

SearchData data: string return true if data has been found in the current page
SetCookie cookie: dict { key: value } add cookie to user’s cookies if this cookie doesn’t

exists and replace it otherwise

Table 1: List of commands and corresponding parameters in SCWAD

4 Experiments

4.1 SCWAD framework

The SCWAD framework is designed as a Python
package and use the playwright library [Microsoft,
2024] to instrument a web browser. Action selection
for the automated agent follows a predefined strategy,
implemented as functions returning elements from a
list of feasible actions. For pentesting, the knowl-
edge base can be initialized with only a starting URL,
a set of users (that can be empty) and the session
cookie name or a pre-filled database can be supplied.
SCWAD also includes a replay mode, where it reads
a filled database and replays each action sequentially.
In this mode, SCWAD creates a new knowledge base
in parallel to the input knowledge base. This allows
for ensuring the new knowledge base contains the
same information as the original knowledge base by
the end of the replay, and comparing vulnerabilities
found during the replay to the initial knowledge base
to detect effective patches. Furthermore, the replay
mode checks that actions it must do can be built from
the new knowledge base as the impossibility to do so
would indicate significant changes in the web appli-
cation.

4.2 Pentesting UVVU with SCWAD

We develop the UVVU [Talon et al., 2023] web ap-
plication to be used as a testbed to evaluate the effec-
tiveness of the proposed SCWAD framework1. This
application is poorly designed intentionally in order
to embed vulnerabilities and mimic the real-world
highly vulnerable applications.
Experimental Setup: In these experiments, we set
the three types of vulnerabilities in UVVU as de-
scribed in Section 3.4: 7 technical information dis-
closure, 2 broken access control and 1 XSS. We test
the 4 different strategies (Section 3.2) in the choice
of actions to perform. The first three strategies serve
as the baselines of the search strategies compared to

1SCWAD will be made available after the publication

vulnerability tracking. All of the 4 search strategies
have the same pool of possible actions to make their
choice for each step of the pentest process. For these
strategies, an action is referred as a possible action to
execute, when the arguments of the command can be
filled with the records in the Knowledge Base or di-
rectly by the Oracle in the proposed system (see Fig-
ure 1). The strategies select one action from all the
possible actions to execute based on their own crite-
ria.

The first three search strategies directly select ac-
tions from the pool of all possible actions. In contrast,
the vulnerability tracking strategy uses sequences of
actions. These sequences are manually coded by hu-
man pentesters as a generalization, upon their ex-
periences of pentest, of sequences that may trig-
ger the different types of vulnerabilities (BAC, XSS,
TID). Moreover, these sequences were defined with-
out knowledge of the target web applications they
would be tested on. These sequences are referred as
action templates in the followings. For each step t of
the pentest process, the vulnerability tracking mod-
ule first compares the actions executed at the previous
two steps (t �1 and t) with the corresponding steps in
the action templates. If it can find an exact match in
the action templates, this module will use the imme-
diately next action at t + 1 suggested by the exactly
matched action template. Otherwise, it will adopt the
exploit-first selection strategy. We compare the first
three strategies to the vulnerability tracking module to
demonstrate that fuzzers (random strategy) and auto-
mated scanners (explore-first and exploit-first strate-
gies) cannot achieve the performances of pentesters
to exploit the vulnerabilities that require to execute
several actions in a chain.

We propose 5 metrics to measure the perfor-
mances of the four different search strategies applied
in our framework. First, we calculate the number of
updates to the knowledge base resulting from the ac-
tions (referred as] update). It indicates how many
times new information were added to the knowledge
base after the execution of an action completed with
a success flag. More frequent updates correspond to
richer information about the target application, thus

Action set

User login: user name
User credentials: The credentials for the application
User cookies: The set of cookies, active or not
User pages: The pages visited by the user and/or
those to which the user has a link
User current page: The current page visited by the
user
User allowed paths: All the links to the pages
reachable by the user

Vulnerabilities, e.g. Broken Access Control and
Reflected Cross-Site Scripting.

Robust and Transferable Learning for IDS

• Learn an attack policy with reinforcement learning

Key question to answer:

Given the current staste of the target
web application and the vulnerability
to explore, what shall be the most
likely action that an attack can take to
compromise the application ?

Thanks !

