Superviz Plenary Meeting
WP4-PO4.1

Yufei Han @ INRIA PIRAT
March 11, 2025
@Campus Cyber




Robust and Transferable Learning for IDS

e What is the bottleneck for ML-based IDS

* Concept drift of attack behaviours: attackers may change attack techniques to
evade detection or exploit new attack surfaces
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Robust and Transferable Learning for IDS

e What is the bottleneck for ML-based IDS

* Concept drift of attack behaviours: attackers may change attack techniques to
evade detection or exploit new attack surfaces
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Robust and Transferable Learning for IDS

* Theoretically, every ML model has a significantly deteriorated
prediction accuracy over concept drifted inputs

Theorem 1 Let 6 € H be a hypothesis, €5(0) and €,(0) be
the expected risks of source and target respectively, then

e:(0) < €4(0) +2dk (p, g+ C, 9)

where C is a constant for the complexity of hypothesis
space and the risk of an ideal hypothesis for both domains.

Distribution gap between training and
testing data

Michel. I. Jordan et al, Learning Transferable Features with Deep Adaption Networks, ICML 2015



Robust and Transferable Learning for IDS

* How to reach this goal ?
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Robust and Transferable Learning for IDS

* Active Learning as a protocol for incrementally update the knoweldge
for network attack classification

Raw Netflows
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Helene Orsini and Yufei Hén, DYNAMO: Towards Network Attack Campaign Attribution via Density-
Aware Active Learning, https://hal-emse.ccsd.cnrs.fr/UNIV-UBS/hal-04877620v1



Robust and Transferable Learning for IDS
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Raw feature vectors from Netflow : GraphSage method
0 =

arg min— e 2 [} log (o(h] ()b ()" ) =A%} s e kNN (x;) T8 (0 (=B (xi) g (x0)))]

. Nearest Neighbor-based Self-
\ supervised feature encoding
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Nearest neighbors in raw data latent feature space of the raw data
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Robust and Transferable Learning for IDS

0
DETECTION
Pu learning

Train a classifier to distinguish between positive and negative.
Learning phase: Positive and Unlabelled (only some of the positive examples

in the training data are labeled and none of the negative examples are)

a2 _argd)mm 3 Zxiesll(gy (ho(xi))yi=+1)~£(gy" (ho(xi)),yi =

_1)] + nlu ZXiGXunlabeled Z(ggb (hQ(Xi))’yi - _1)
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Robust and Transferable Learning for IDS

* Back to the question “How to reach a robust IDS facing concept drift
?I)

* Can we predict the attack behaviour ?

* Natan Talon et al, SCWAD: Automated Pentesting of Web
Applications, https://inria.hal.science/hal-04874868v1/document



https://inria.hal.science/hal-04874868v1/document

Robust and Transferable Learning for IDS

Vulnerabilities, e.g. Broken Access Control and
Reflected Cross-Site Scripting.

Action set
We icati
b app“cat on Command Parameters Expected behavior on the Web application
AccessWebPage | u: url change current page for the current user
> SendHttpForm | x: xpath , input: dict { key: | send the form identified by x and filled with input to
value } the web application
SearchData data: string return true if data has been found in the current page
@ Execute — SetCookie cookie: dict { key: value } add cookie to user’s cookies if this cookie doesn’t
(action, user) exists and replace it otherwise
/ @ Update
Agent Verifier
User login: user name

® CB;Sgler:;Stie;ﬁ--cLier) ® Check all predicates  User credentials: The credentials for the application
TN User cookies: The set of cookies, active or not
' N e User pages: The pages visited by the user and/or
a Y x those to which the user has a link
Knowledge Base User current page: The current page visited by the
user

@ Initialize User allowed paths: All the links to the pages
Knowledge Base reachable by the user

Query R
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Robust and Transferable Learning for IDS

* Learn an attack policy with reinforcement learning
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Update V, with the gradient VLY (i) by SGD

Mini-batch Samples (length: U)
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Key question to answer:

Given the current staste of the target
web application and the vulnerability
to explore, what shall be the most
likely action that an attack can take to
compromise the application ?
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