

Toward Fast and Autonomous Security Reaction Mechanisms: Application to Malware Propagation

SOTERN - IRISA, IMT ATLANTIQUE

- Do Duc Anh NGUYEN (Presenter)
- Pierre ALAIN
- Fabien AUTREL
- Ahmed BOUABDALLAH
- Guillaume DOYEN
- Jérôme FRANÇOIS

-) do-duc-anh.nguyen@imt-atlantique.fr
 - pierre.alain@irisa.fr
 - fabien.autrel@imt-atlantique.fr
 - ahmed.bouabdallah@imt-atlantique.fr
 - guillaume.doyen@imt-atlantique.fr
 - jerome.francois@uni.lu

SuperViz meeting, Paris, March 11, 2025

Context: The Need for Security Automation

Work Summarization

- Previous Work
- Problematic and Research Questions

Demonstration: Opportunistic Reaction - The Case of WannaCrv 3

Ongoing Work

Demonstration: Opportunistic Reaction - The Case of WannaCrv Context: The Need for Security Automation Work Summarization Ongoing Work Euture Work 2/15 March 11, 2025

- Toward Fast and Autonomous Security Reaction Mechanisms: Application to Malware Propagation

Context: The Need for Security Automation

2 Work Summarization

- Previous Work
- Problematic and Research Questions

Demonstration: Opportunistic Reaction - The Case of WannaCry

Ongoing Work

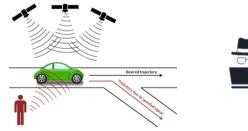
Context: The Need for Security Automation Work Summarization

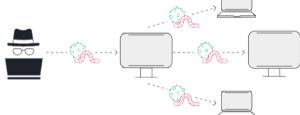
Demonstration: Opportunistic Reaction - The Case of WannaCry

Ongoing Work

Future Work

- Toward Fast and Autonomous Security Reaction Mechanisms: Application to Malware Propagation


March 11, 2025


Why Security Automation?

- Escalating Cyber Threats
- Faster Incident Response
- Reduced Human Errors

Research question

Are current security reaction mechanisms effective in mitigating rapid attack events?

GPS spoofing

Malware propagation \rightarrow Selected usecase

Context: The Need for Security Automation Work Summarization Ococo Ococo

Work Summarization

- Previous Work
- Problematic and Research Questions

Demonstration: Opportunistic Reaction - The Case of WannaCry

Ongoing Work

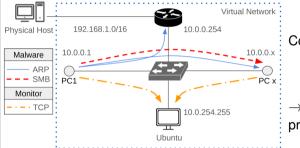
5 Future Work

Context: The Need for Security Automation

Work Summarization

Demonstration: Opportunistic Reaction - The Case of WannaCry

Ongoing Work


Future Work

- Toward Fast and Autonomous Security Reaction Mechanisms: Application to Malware Propagation

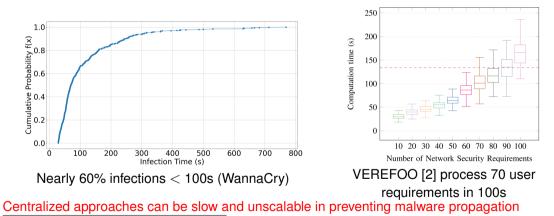
March 11, 2025

Previous Work [1]

The propagation behavior of WannaCry and NotPetya has been empirically studied

Contributions

- Measurement of propagation speed
- Discussion on their propagation strategies
- \rightarrow Provide meaningful insights into malware propagation on a local network and on the Internet


Local network with 50 Windows hosts

[1] Do Duc Anh Nguyen et al. "How Fast does Malware Leveraging EternalBlue Propagate? The case of WannaCry and NotPetya". In: SecSoft Workshop. 2024

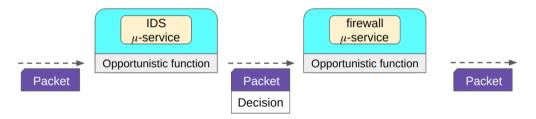
Context: The Need for Security Automation Work Summarization Demonstration: Opportunistic Reaction - The Case of WannaCry Ongoing Work Summarization Opportunistic Reaction - The Case of WannaCry Ongoing Work Opportunistic Reaction - The Case of WannaCry Ongoing Work Opportunistic Reaction - The Case of WannaCry Ongoing Work Opportunistic Reaction - The Case of WannaCry Ongoing Work Opportunistic Reaction - The Case of WannaCry Oppor

Problematic

Are current security reaction mechanisms effective in mitigating malware propagation?

[2] Daniele Bringhenti et al. "Automated Firewall Configuration in Virtual Networks". In: IEEE Transactions on Dependable and Secure Computing 20.2 (2023)

Context: The Need for Security Automation Work Summarization Demonstration: Opportunistic Reaction - The Case of WannaCry Ongoing Work OCO

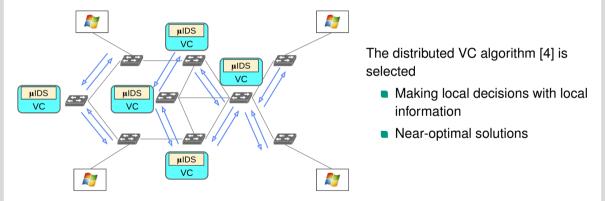

Proposal

Flexibility and scalability in security function deployment

Microservices [3]

Microservices are based on the concept of breaking complex applications into multiple small services that handle specific functions and can be modified without affecting the others.

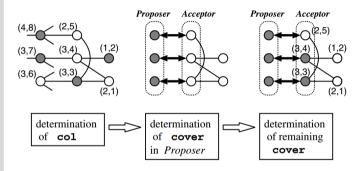
Fast reaction decision transmission: Decentralized and opportunistic synchronization



\Rightarrow Not the optimal solution, but can stop the attack immediately

Context: The Need for Security Automation	Work Summarization	Demonstration: Opportunistic Reaction - The Case of WannaC	Cry Ongoing Work	Future Work
 Toward Fast and Autonomous Security Reaction Mechanisms: Application to Malware Propagation 			March 11, 2025	6/15

Research Questions


How can we optimize the placement of IDS microservices? A Vertex Cover (VC) approach

[4] Jun Kiniwa "Approximation of self-stabilizing vertex cover less than 2". Symposium on Self-Stabilizing Systems (2005)

Context: The Need for Security Automation Work Summarization Demonstration: Opportunistic Reaction - The Case of WannaCry Ongoing Work Summarization OOO

The Self-Stabilizing VC Algorithm

1. If I was not matched

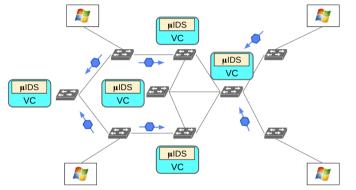
 $\Rightarrow col_i := d_i$

2. If I was matched

 $\Rightarrow \mathit{col}_i := \mathit{max}(\mathit{d}_i, \mathit{d}_k)$

- 3. If a higher-color node *j* point to $me \Rightarrow i \rightarrow j; col_i :=$ $d_j; cover_i := false$
- 4. If I point to a higher-color node but he does not point to me
 ⇒ i → null; col_i := d_i; cover_i :=

5. If no one point to me and I have a smaller-color node $j \Rightarrow i \rightarrow j$; cover_i := true


6. If I am not the smallest-degree node $\Rightarrow cover_i := True$, otherwise, $cover_i := False$

Context: The Need for Security Automation Work Summarization Opportunistic Reaction - The Case of WannaCry Ongoing Work OOO Future Work

⁻ Toward Fast and Autonomous Security Reaction Mechanisms: Application to Malware Propagation

Research Questions

How can we block traffic as close to the attack source as possible? IP traceback

Adapt the [5] solution to allow μ IDS traceback to where the attack source is

 Non-VC nodes embed its ID into packets for traceback

[5] Runhu Wang et al. "In-band network telemetry based fine-grained traceability against IP address spooling attack". ACM (2021)

Work Summarization

- Previous Work
- Problematic and Research Questions

Opportunistic Reaction - The Case of WannaCry

Ongoing Work

5 Future Work

Context: The Need for Security Automation

Work Summarization

Demonstration: Opportunistic Reaction - The Case of WannaCry

Ongoing Work

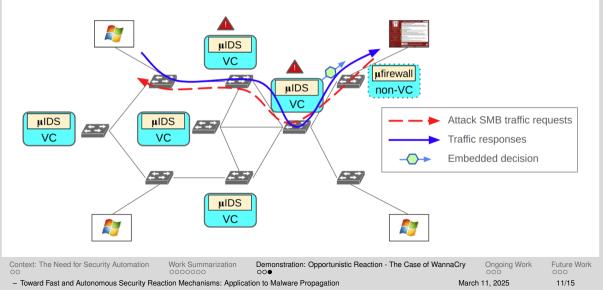
Future Work

- Toward Fast and Autonomous Security Reaction Mechanisms: Application to Malware Propagation

March 11, 2025

Demonstration: Opportunistic Reaction - The Case of WannaCry

To what extent microservices augmented with opportunistic synchronization can mitigate the WannaCry propagation in a basic but realistic environment **Setup**


- 4 Windows hosts, 1 of which contains the WannaCry executable
- IDS and firewall microservices: MirageOS unikernels vs Unikraft unikernels
- Switch emulation in GNS3: Ubuntu VMs

Scenario

- The distributed VC algorithm
 - > Each node collects its local information by broadcasting
 - ▷ They decide to be in VC set (deploy an IDS) or not
- The opportunistic approach: The option field in the IP layer is used
 - \triangleright Non-VC nodes: their ID, interface number, registration (i.e., 1)
 - ▷ VC nodes: node ID, interface number, DROP decision (i.e., 0)

Context: The Need for Security Automation Work Summarization Opportunistic Reaction - The Case of WannaCry Ongoing Work Summarization Opportunistic Reaction - The Case of WannaCry Ongoing Work OOO - Toward Fast and Autonomous Security Reaction Mechanisms: Application to Malware Propagation March 11. 2025 10/15

Demonstration: Opportunistic Reaction - The case of WannaCry

2) Work Summarization

- Previous Work
- Problematic and Research Questions

Demonstration: Opportunistic Reaction - The Case of WannaCry

Ongoing Work

Future Work

Context: The Need for Security Automation $_{\rm OO}$

Demonstration: Opportunistic Reaction - The Case of WannaCry

Ongoing Work Future Work

- Toward Fast and Autonomous Security Reaction Mechanisms: Application to Malware Propagation

March 11, 2025

Ongoing Work

Putting our approach into more realistic scenarios Layer-3 topologies shared by topohub [6]

Visual	on usage	as link:	width C2	color 🔽	opacity
B ase					

	backhor
	ONCHOO!
riber of nodes	
rber of links	
riber of demands	
ins an under dennes	

Name:	backbone/europe
Number of nodes	812
Number of Inks	1287
Number of domands	340256
Minimum vertex degree	1
Average vertex degree	3.02
Standard deviation of series degree	1.25
Maximum vertex degree	14
Cini coefficent	0.23
Materium tex longth	3.68
Average link length	135.44
Maximum link length	1061.78
Graph diameter (by link lenghts)	6250.53

Information on the topohub

- Multiple real topologies of different sizes
- Number of network nodes. locations
- Traffic volume, link utilization

^[6] Piotr Jurkiewicz et al. "TopoHub: A repository of reference Gabriel graph and real-world topologies for networking research". SoftwareX. 2023

Context: The Need for Security Automation Work Summarization Demonstration: Opportunistic Reaction - The Case of WannaCrv Ongoing Work Euture Work 000 - Toward Fast and Autonomous Security Reaction Mechanisms: Application to Malware Propagation 12/15March 11, 2025

Ongoing Work

Generate legitimate traffic using traffic models

- Source models
 - Poisson model: Input mean rate
 - On/Off model: Input pack rate, probabilities of on/off process
 - \rightarrow Distribution of packet arrivals
- Source-Destination models
 - Gravity model: Input volumn of traffic for each host
 - Indenpendent-Connection (IC) model [7]: Input traffic volume, popularity, ratio of forward and reverse traffic for each host
 - \rightarrow Results in a Traffic Matrix (TM), which represents the volume of traffic from a host to other hosts
 - \Rightarrow Can take the TM directly into traffic generators

^[7] Vijayi Erramill et al. "An independent-connection model for traffic matrices". ACM. 2006

Context: The Need for Security Automation	Work Summarization	Demonstration: Opportunistic Reaction - The Case of Wann 000	aCry Ongoing Work	Future Work
 Toward Fast and Autonomous Security Reaction Mechanisms: Application to Malware Propagation 			March 11, 2025	13/15

- Previous Work

Demonstration: Opportunistic Reaction - The Case of WannaCry

Ongoing Work

Context: The Need for Security Automation Demonstration: Opportunistic Reaction - The Case of WannaCry Work Summarization Ongoing Work March 11, 2025

Future Work

....

13/15

- Toward Fast and Autonomous Security Reaction Mechanisms: Application to Malware Propagation

Future Work

Propose an empirical performance evaluation to the Journal of Network and Systems Management (JNSM) Research questions

- How can we block attacks when requests and responses take different paths?
- How can we block attacks when no IDS sits between attacker and victim?
- How can we delegate knowledge of a removed IDS to other IDSs?
- How to secure the opportunistic communication?

Ending

Thank you for listening Source code:

https://gitlab.imt-atlantique.fr/d22nguye/gns3_unikernel_testbed

Context: The Need for Security Automation Work Summarization Ococo o Ococo o Ococo o Ococo o Ococo o Ococo o Ococo Ococo