Testing the reassembly consistency of IDS and OS in the presence of overlapping data SuperviZ workshop

Presenter:

Lucas Aubard

Supervisors:

Johan Mazel, Gilles Guette

Pierre Chifflier

Ph.D dates:

01/10/2022 - 30/09/2025

17/12/2024

Plan

Plan

Chunking mechanism in some Internet protocols

Generic networking problem

Application wants to send a lot of data and medium/underlying protocol is limited.

Solution

Chunk it

- Ethernet/IPv4||IPv6: fragmentation
- Ethernet/IP/TCP: segmentation

Chunking mechanism in some Internet protocols: examples

Figure 1: Normal chunk transmission

Chunking mechanism in some Internet protocols: examples

Figure 2: Chunk reordering

Chunking mechanism in some Internet protocols: examples

Chunking mechanism in some Internet protocols: examples

Reassembly policies may change depending on OSes for $IPv4^1,$ $IPv6^2,$ TCP^3 protocols and depending on QUIC implementations^4

Figure 4: Chunk overlap

¹J. Novak. Target-based fragmentation reassembly. 2005, U. Shankar and V. Paxson. Active mapping: Resisting NIDS evasion withouts altering traffic. 2003.

²A. Atlasis. Attacking ipv6 implementation using fragmentation. 2012.

³ J. Novak and S. Sturges. Target-based tcp stream reassembly. 2007, U. Shankar and V. Paxson. Active mapping: Resisting NIDS evasion withouts altering traffic. 2003.

⁴G-S. Reen and C. Rossow. DPIFuzz: a differential fuzzing framework to detect DPI elusion strategies for QUIC. 2020.

Attacks targetting IDSes using chunking mechanism

Problem

Attacks targeting IDSes and exploiting data overlap exist⁵

Existing countermeasure

manually configure an IDS to associate an IP address with a reassembly policy

⁵T. Ptacek and T. Newsham. Insertion, evasion, and denial of service: Eluding network intrusion detection. 1998.

Considered attack types

Attack type	Host	Target	Reassembled data	Attack scenario
	IDS		-	E 1
Evasion	Supervised host	×	"ATTACK"	EI
	IDS		"AT00CK"	E0
	Supervised host	×	"ATTACK"	L2
Insertion	IDS	×	"ATTACK"	11
	Supervised host		-	11
	IDS	X	"ATTACK"	12
	Supervised host		"AT00CK"	12

Table 1: Attack type illustration. - means the implementation ignoresthe flow chunk data.

Related work limits

- Manual or semi-automatic (fuzzing, symbolic execution) methods are used to generate overlap test cases
 RQ1. Are these methods exhaustive? If not, can we do better?
- It's been 10 years no work have specifically addressed OSes' IPv4 and TCP policy reassemblies
 RQ2. Have the reassembly policies of recent OSes changed?
- Some IDSes allow one to configure the host reassembly policy RQ3. *Do such IDSes reassemble consistently with OSes?*

Plan

Context

Threat model

Attacker needs to:

- identify victim host OS and IDS reassembly policies.
- craft IP header fields and payload (IP fragment-based attack).
- craft TCP header fields and payload (TCP segment-based attack).

Plan

Context

Test case modeling

Table 2: Allen's interval algebra relations.

Test case modeling and related works

Relation <i>R</i>	Illustration	
X Meets Y	Y	
X Before Y	Y	
X Eq ual Y	<u>Y</u> <u>X</u>	
X Overlaps Y	<u> </u>	
X <mark>S</mark> tarts Y	<u>Y</u> <u>X</u>	\rightarrow
X During Y	<u> </u>	
X F inishes Y	<u> </u>	

Table 3: Allen's intervalalgebra relations.

Work	Year	Protocol	Tested Allen relations	Exhaustivity
Ptaceck et al. [5]	1998	IPv4 /TCP	Fi, D	
Shankar et al.	2002	IPv4	O, Oi, Eq	
[7]	2003	TCP	0, D	
Novak [3]	2005	IPv4	O, Oi, S, Si, F, Fi, D, Di, Eq	\checkmark
Novak et al. [4]	2007	ТСР	O, Oi, S, Si, F, Fi, D, Di, Eq	✓
Atlasis [1]	2012	IPv6	O, Oi, S, Si, F, Fi, D, Di, Eq	\checkmark
Di Paolo et al. [2]	2023	IPv6	O, Oi, Eq	
Us	-	IPv4/IPv6/ TCP	O, Oi, Ŝ, Si, F, Fi, D, Di, Eq	\checkmark

Table 4: Summary regarding overlap-based works.

Test modes

Pyrolyse test pipeline

Easy to extend tool written in Bust that implements the following generic steps:

Plan

Context

Results

OS reassembly policy evolution

	Protocol		Т	Test case								
OS		Testing	Testing Overlapping relation									
	VEISION	mode	F	Fi	S	Si	0	0i	D	Di	Eq	
	10.4	multiple	ø	ø	ø	ø	ø	ø	ø	ø	ø	
	IPV4	single	n	ø	n	0	ø	ø	n	0	n	
M/2 1 10	ID C	multiple	ø	Ø	Ø	Ø	ø	ø	ø	ø	ø	
vvindows 10	IPV0	single	n	ø	n	0	ø	ø	n	0	n	
	TCD	multiple	0	0	0	0	0	0	0	0	0	
	TCP	single	0	0	0	0	0	0	0	0	0	
D.11. 40	ID 4	multiple	Ø	Ø	Ø	Ø	Ø	ø	Ø	Ø	ø	
	IPV4	single	n	ø	n	0	ø	ø	n	0	n	
	IPv6	multiple	ø	ø	ø	ø	ø	ø	ø	ø	ø	
Debian 12		single	n	ø	n	0	ø	ø	n	0	n	
	ТСР	multiple	n	0	0	0	0	n	n	0	0	
		single	n	0	n	0	0	n	n	0	0	
	IPv4	multiple	n	0	0	0	0	0	n	0	0	
		single	n	ø	n	0	0	0	n	0	n	
SunOS 5 11	IDv6	multiple	n	0	0	0	0	0	n	0	0	
50105 5.11	IF VO	single	n	ø	n	0	0	0	n	0	n	
	TCP	multiple	n	0	n	0	n	0	n	0	n	
	i Cr	single	n	0	n	0	n	0	n	0	0	
FreeBSD 13.1/	ID. 4	multiple	n	0	0	0	0	n	n	0	0	
	IFV4	single	n	ø	n	0	0	n	n	0	n	
	IDv6	multiple	ø	Ø	ø	ø	ø	ø	ø	ø	ø	
OpenBSD 7.4	IF VO	single	n	ø	n	0	ø	ø	n	0	n	
	TCP	multiple	n	0	0	0	0	n	n	0	0	
	I CP	single	n	0	0	0	0	n	n	0	0	

Results

Debian 12 reassembly policy evolution

				Т	est ca	ase				
Protocol	Testing		Overlapping relation							
	mode	F	Fi	S	Si	0	0i	D	Di	Eq
	multiple	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
11 V4	single	n	Ø	n	0	Ø	Ø	n	0	n
IPv6	multiple	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
	single	n	Ø	n	0	Ø	Ø	n	0	n
ТСР	multiple	n	0	0	0	0	n	n	0	0
	single	n	0	n	0	0	n	n	0	0

Table 5: IP and TCP reassembly policies of Debian 12. o means that oldest fragment data is prefered, n means that newest fragment data is prefered and \varnothing means that the OS ignores the overlap. Bold blue means that *multiple* and *single* strategies are reassembled differently. Green (resp. red) means the observed reassembly is consistent (resp. inconsistent) with latest related works⁶.

⁶J. Novak. Target-based fragmentation reassembly. 2005, J. Novak and S. Sturges. Target-based tcp stream reassembly. 2007, Edoardo Di Paolo, Enrico Bassetti and Angelo Spognardi. "A New Model for Testing IPv6 Fragment Handling". inEuropean Symposium on Research in Computer Security: Springer. 2023, pages 277–294.

Results IDS/OS consistency

	Rule	Testing	Test case								
Implementation		Testing	_			verla	pping	relatio	on 🙃	-	_
	file	mode	r	Fi	5	51	0	01	D	Di	Eq
Mendaria 10			a	~	~	~	~	~	a	~	~
Windows 10			ص	ع	ع	ع	ع	ص	ص	ص	ص
Suricata-windows	any	multiple	°.	°.	°.	°.	°.	°.		°.	•
Short-windows	any		°.	°.	°.	°.	°.	°.		°.	•
Zeek	-		0	0	0	0	0	0	0	0	0
Windows 10	1.6.14		n	2	n	0	ص	ط	n	0	n
Suricata-windows	default		~	~		â	°.	°.	~	2	
Suricata-windows	tiow	single	6	~	20	2	°.	°.	6	6	ø
Short-windows	default			2		2	•	•		2	
Snort-windows	flow		ø	6	ø	2	°.	°.	ø	0	ø
Деек			n	•	n	•	•	•	n	•	n
Debian 12	-		ø	ø	ø	ø	ø	ø	ø	ø	ø
Suricata-linux	any	multiple	n	•	n	n	•	n	n	•	n
Snort-linux	any		n	•	n	n	•	n	n	•	n
Zeek	-		0	0	0	0	0	0	0	0	0
Debian 12			n	ø	n	0	ø	ø	n	0	n
Suricata-linux	default	single	n	•	n	•	•	n	n	۰	n
Suricata- <i>linux</i>	flow		ø	•	ø	ø	•	n	ø	ø	ø
Snort-linux	default		n	ø	n	•	•	n	n	۰	n
Snort-linux	flow		ø	ø	ø	ø	•	n	ø	ø	ø
Zeek			n	0	n	0	0	•	n	0	n
SunOS 5.11			n	0	0	0	0	0	n	0	0
Suricata-solaris	any		n	0	0	0	0	•	n	•	0
Snort-solaris	any	multiple	n	0	0	0	0	•	n	•	0
Zeek			•	0	0	0	0	•	•	•	0
SunOS 5.11			n	ø	n	0	0	0	n	0	n
Suricata-solaris	default		n	0	n	0	0	•	n	•	n
Suricata-solaris	flow		ø	•	ø	ø	0	0	ø	ø	ø
Snort-solaris	default	single	n	ø	n	0	0	•	n	•	n
Snort-solaris	flow		ø	ø	ø	ø	0	0	ø	ø	ø
Zeek	-		n	•	n	0	0	0	n	0	n
FreeBSD 13.1			n	0	0	0	0	n	n	0	0
Suricata-bsd	any		n	0	0	0	0	n	n	0	0
Snort-bsd	any	multiple	n					n	n		0
Zeek	1.1		•	•	•	•	•	0	•		0
FreeBSD 13.1			n	ø	n	0	0	n	n	0	n
Suricata-bsd	default		n	0	n			0	n		n
Suricata-bsd	flow		ø		ø	ø			ø	ø	ø
Snort-bsd	default	single		ø			-				n
Sport-bsd	flow		ø	ā	ø	ø			ø	ø	ø
Zeek	-						ő			-	
								- C		- ² -	

Table 6: IDS IPv4 reassembly policy consistency with OSes.

Results

IDS evasion and insertion attack opportunities

Protocol	IDS	Reassembly	Number of OSes w/ possible attack type				
		inconsistencies	Evasion	Insertion			
	Suricata	8 (22%)	1/4	4/4			
IPv4	Snort	4 (11%)	0/4	2/4			
	Zeek	9 (25%)	4/4	1/4			
IPv6	Suricata	9 (25%)	0/4	4/4			
	Snort	6 (17%)	0/4	3/4			
	Zeek	28 (78%)	4/4	4/4			
	Suricata	1 (3%)	1/4	1/4			
ТСР	Snort	1 (3%)	1/4	1/4			
	Zeek	11 (31%)	3/4	3/4			

Table 7: IDS inconsistencies with OS reassemblies and corresponding attack opportunities for the *single* test mode.

Responsible disclosure

Every reassembly inconsistency is a possible security issue

- communication with IDS developers
- Suricata already fixed some misassemblies

Conclusion and future works

Conclusion

- OS reassembly policies evolve
- overlap-based attacks can still target IDSes \rightarrow they must take into account OS reassembly evolutions

Future works

- Investigate *n* > 2 overlapping chunks
- Target more protocol implementations (e.g., offloaded stacks on NIC, embedded stacks)

Testing the reassembly consistency of IDS and OS in the presence of overlapping data SuperviZ workshop

Thanks!

