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Context
Chunking mechanism in some Internet protocols

Generic networking problem
Application wants to send a lot of data and medium/underlying
protocol is limited.

Solution
Chunk it

• Ethernet/IPv4||IPv6: fragmentation
• Ethernet/IP/TCP: segmentation
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Context
Chunking mechanism in some Internet protocols: examples

Figure 1: Normal chunk transmission
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Context
Chunking mechanism in some Internet protocols: examples

Figure 2: Chunk reordering
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Context
Chunking mechanism in some Internet protocols: examples

Figure 3: Chunk loss
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Context
Chunking mechanism in some Internet protocols: examples

Reassembly policies may change depending on OSes for IPv41,
IPv62, TCP3 protocols and depending on QUIC implementations4

Figure 4: Chunk overlap

1J. Novak. Target-based fragmentation reassembly. 2005, U. Shankar and V. Paxson. Active mapping:
Resisting NIDS evasion withouts altering traffic. 2003.

2A. Atlasis. Attacking ipv6 implementation using fragmentation. 2012.
3J. Novak and S. Sturges. Target-based tcp stream reassembly. 2007, U. Shankar and V. Paxson. Active

mapping: Resisting NIDS evasion withouts altering traffic. 2003.
4G-S. Reen and C. Rossow. DPIFuzz: a differential fuzzing framework to detect DPI elusion strategies for

QUIC. 2020.
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Context
Attacks targetting IDSes using chunking mechanism

Problem
• Attacks targeting IDSes and exploiting data overlap exist5

Existing countermeasure
• manually configure an IDS to associate an IP address with a

reassembly policy
5T. Ptacek and T. Newsham. Insertion, evasion, and denial of service: Eluding network intrusion detection.

1998.
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Context
Considered attack types

Attack type Host Target Reassembled
data

Attack
scenario

Evasion

IDS - E1
Supervised host ✗ "ATTACK"
IDS "AT00CK" E2
Supervised host ✗ "ATTACK"

Insertion

IDS ✗ "ATTACK" I1
Supervised host -
IDS ✗ "ATTACK" I2
Supervised host "AT00CK"

Table 1: Attack type illustration. - means the implementation ignores
the flow chunk data.
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Related work limits

• Manual or semi-automatic (fuzzing, symbolic execution)
methods are used to generate overlap test cases

RQ1. Are these methods exhaustive? If not, can we do better?
• It’s been 10 years no work have specifically addressed OSes’

IPv4 and TCP policy reassemblies
RQ2. Have the reassembly policies of recent OSes changed?

• Some IDSes allow one to configure the host reassembly policy
RQ3. Do such IDSes reassemble consistently with OSes?
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Threat model

Attacker needs to:
• identify victim host OS and IDS reassembly policies.
• craft IP header fields and payload (IP fragment-based attack).
• craft TCP header fields and payload (TCP segment-based

attack).

Attacker
Supervised

host

IDS
Victim network

Internet
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Test case modeling

Relation
R Interpretation Relation

R inverse

X M Y X

Y

1

meets X

Y

1

X Mi Y


non-

overlapping
relationsX B Y X

Y

1

before X

Y

1

X Bi Y

X Eq Y X

Y

1

equal -



overlapping
relations

X O Y X

Y

1

overlap X

Y

1

X Oi Y

X S Y X

Y

1

start X

Y

1

X Si Y

X D Y X

Y

1

during X

Y

1

X Di Y

X F Y X

Y

1

finish X

Y

1

X Fi Y

Table 2: Allen’s interval algebra relations.
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Test case modeling and related works

Relation
R Illustration

X Meets Y X

Y

1

X Before Y X

Y

1

X Equal Y X

Y

1

X Overlaps Y X

Y

1

X Starts Y X

Y

1

X During Y X

Y

1

X F inishes Y X

Y

1

Table 3: Allen’s interval
algebra relations.

→

Work Year Protocol Tested
Allen relations Exhaustivity

Ptaceck et al.
[5] 1998 IPv4 /TCP Fi , D

Shankar et al.
[7] 2003 IPv4 O, Oi , Eq

TCP O, D
Novak

[3] 2005 IPv4 O, Oi , S, Si , F ,
Fi , D, Di , Eq ✓

Novak et al.
[4] 2007 TCP O, Oi , S, Si , F ,

Fi , D, Di , Eq ✓

Atlasis
[1] 2012 IPv6 O, Oi , S, Si , F ,

Fi , D, Di , Eq ✓

Di Paolo et al.
[2] 2023 IPv6 O, Oi , Eq

Us - IPv4/IPv6/
TCP

O, Oi , S, Si , F ,
Fi , D, Di , Eq ✓

Table 4: Summary regarding
overlap-based works.
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Test modes

(O) test case →

tim
e

offset

tim
e

fragment offset

t0

1

t16

5

t10

22

single mode
multiple mode

bit MF = 0

bit MF = 0

IP testing

t0

t1

1 2 3 4

tim
e

seq number
3

tim
e

seq number

t0

1

t17

21
5

t10

4

single mode
multiple mode

TCP testing

t0

t1
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Pyrolyse test pipeline

Easy to extend tool written in ust that implements the
following generic steps:

Payload patterns

AABBCCDD
AABBDDCC

...
DDCCBBAA

Overlap case
description

test-1
...

test-n

test-1.pcap

test-n.pcap

test-1.log

test-n.log

payload_1

payload_n

payload_1

payload_n

policy_1

policy_n

policy_1

policy_n

consistency_1

consistency_n
sig.rules

Payload
extraction

Policy
extraction

Reassembly
obtention

Signature
generation

Payload
extraction

Policy
extraction

Consistency
check

Detection

IDS test

OS test
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Results
OS reassembly policy evolution

OS
Protocol
version

Test case
Testing
mode

Overlapping relation
F Fi S Si O Oi D Di Eq

Windows 10

IPv4 multiple ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
single n ∅ n o ∅ ∅ n o n

IPv6 multiple ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
single n ∅ n o ∅ ∅ n o n

TCP multiple o o o o o o o o o
single o o o o o o o o o

Debian 12

IPv4 multiple ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
single n ∅ n o ∅ ∅ n o n

IPv6 multiple ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
single n ∅ n o ∅ ∅ n o n

TCP multiple n o o o o n n o o
single n o n o o n n o o

SunOS 5.11

IPv4 multiple n o o o o o n o o
single n ∅ n o o o n o n

IPv6 multiple n o o o o o n o o
single n ∅ n o o o n o n

TCP multiple n o n o n o n o n
single n o n o n o n o o

FreeBSD 13.1/
OpenBSD 7.4

IPv4 multiple n o o o o n n o o
single n ∅ n o o n n o n

IPv6 multiple ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
single n ∅ n o ∅ ∅ n o n

TCP multiple n o o o o n n o o
single n o o o o n n o o
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Results
Debian 12 reassembly policy evolution

Protocol
Test case

Testing
mode

Overlapping relation
F Fi S Si O Oi D Di Eq

IPv4
multiple ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
single n ∅ n o ∅ ∅ n o n

IPv6
multiple ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
single n ∅ n o ∅ ∅ n o n

TCP
multiple n o o o o n n o o
single n o n o o n n o o

Table 5: IP and TCP reassembly policies of Debian 12. o means that oldest
fragment data is prefered, n means that newest fragment data is prefered and ∅
means that the OS ignores the overlap. Bold blue means that multiple and single
strategies are reassembled differently. Green (resp. red ) means the observed
reassembly is consistent (resp. inconsistent) with latest related works6.

6J. Novak. Target-based fragmentation reassembly. 2005, J. Novak and S. Sturges. Target-based tcp stream
reassembly. 2007, Edoardo Di Paolo, Enrico Bassetti and Angelo Spognardi. “A New Model for Testing IPv6
Fragment Handling”. inEuropean Symposium on Research in Computer Security: Springer. 2023, pages 277–294.
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Results
IDS/OS consistency

Implementation
Rule

file

Test case
Testing Overlapping relation

mode F Fi S Si O Oi D Di Eq

Windows 10 -

multiple

∅∅∅ ∅∅∅ ∅∅∅ ∅∅∅ ∅∅∅ ∅∅∅ ∅∅∅ ∅∅∅ ∅∅∅
Suricata-windows any o o o o o o n o o
Snort-windows any o o o o o o n o o
Zeek - o o o o o o o o o
Windows 10 -

single

n ∅∅∅ n o ∅∅∅ ∅∅∅ n o n
Suricata-windows default n ∅ n o o o n o n
Suricata-windows flow ∅ ∅ ∅ ∅ o o ∅ ∅ ∅
Snort-windows default n ∅ n o o o n o n
Snort-windows flow ∅ ∅ ∅ ∅ o o ∅ ∅ ∅
Zeek - n o n o o o n o n
Debian 12 -

multiple

∅∅∅ ∅∅∅ ∅∅∅ ∅∅∅ ∅∅∅ ∅∅∅ ∅∅∅ ∅∅∅ ∅∅∅
Suricata-linux any n o n n o n n o n
Snort-linux any n o n n o n n o n
Zeek - o o o o o o o o o
Debian 12 -

single

n ∅∅∅ n o ∅∅∅ ∅∅∅ n o n
Suricata-linux default n o n o o n n o n
Suricata-linux flow ∅ o ∅ ∅ o n ∅ ∅ ∅
Snort-linux default n ∅ n o o n n o n
Snort-linux flow ∅ ∅ ∅ ∅ o n ∅ ∅ ∅
Zeek - n o n o o o n o n
SunOS 5.11 -

multiple

n o o o o o n o o
Suricata-solaris any n o o o o o n o o
Snort-solaris any n o o o o o n o o
Zeek - o o o o o o o o o
SunOS 5.11 -

single

n ∅∅∅ n o o o n o n
Suricata-solaris default n o n o o o n o n
Suricata-solaris flow ∅ o ∅ ∅ o o ∅ ∅ ∅
Snort-solaris default n ∅ n o o o n o n
Snort-solaris flow ∅ ∅ ∅ ∅ o o ∅ ∅ ∅
Zeek - n o n o o o n o n
FreeBSD 13.1 -

multiple

n o o o o n n o o
Suricata-bsd any n o o o o n n o o
Snort-bsd any n o o o o n n o o
Zeek - o o o o o o o o o
FreeBSD 13.1 -

single

n ∅∅∅ n o o n n o n
Suricata-bsd default n o n o o o n o n
Suricata-bsd flow ∅ o ∅ ∅ o o ∅ ∅ ∅
Snort-bsd default n ∅ n o o n n o n
Snort-bsd flow ∅ ∅ ∅ ∅ o n ∅ ∅ ∅
Zeek - n o n o o o n o n

Table 6: IDS IPv4 reassembly policy consistency with OSes.
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Results
IDS evasion and insertion attack opportunities

Protocol IDS Reassembly
inconsistencies

Number of OSes w/
possible attack type
Evasion Insertion

IPv4
Suricata 8 (22%) 1/4 4/4
Snort 4 (11%) 0/4 2/4
Zeek 9 (25%) 4/4 1/4

IPv6
Suricata 9 (25%) 0/4 4/4
Snort 6 (17%) 0/4 3/4
Zeek 28 (78%) 4/4 4/4

TCP
Suricata 1 (3%) 1/4 1/4
Snort 1 (3%) 1/4 1/4
Zeek 11 (31%) 3/4 3/4

Table 7: IDS inconsistencies with OS reassemblies and corresponding attack
opportunities for the single test mode.
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Responsible disclosure

Every reassembly inconsistency is a possible security issue
• communication with IDS developers
• Suricata already fixed some misassemblies
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Conclusion and future works

Conclusion
• OS reassembly policies evolve
• overlap-based attacks can still target IDSes → they must take

into account OS reassembly evolutions

Future works
• Investigate n > 2 overlapping chunks
• Target more protocol implementations (e.g., offloaded stacks

on NIC, embedded stacks)
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