
Testing the reassembly consistency of IDS and
OS in the presence of overlapping data

SuperviZ workshop

Presenter: Lucas Aubard

Supervisors: Johan Mazel, Gilles Guette

Pierre Chifflier

Ph.D dates: 01/10/2022 - 30/09/2025

17/12/2024

1/20

Plan

1 Context

2 Threat model

3 Method

4 Results

1/20

Plan

1 Context

2 Threat model

3 Method

4 Results

2/20

Context
Chunking mechanism in some Internet protocols

Generic networking problem
Application wants to send a lot of data and medium/underlying
protocol is limited.

Solution
Chunk it

• Ethernet/IPv4||IPv6: fragmentation
• Ethernet/IP/TCP: segmentation

3/20

Context
Chunking mechanism in some Internet protocols: examples

Figure 1: Normal chunk transmission

4/20

Context
Chunking mechanism in some Internet protocols: examples

Figure 2: Chunk reordering

5/20

Context
Chunking mechanism in some Internet protocols: examples

Figure 3: Chunk loss

6/20

Context
Chunking mechanism in some Internet protocols: examples

Reassembly policies may change depending on OSes for IPv41,
IPv62, TCP3 protocols and depending on QUIC implementations4

Figure 4: Chunk overlap

1J. Novak. Target-based fragmentation reassembly. 2005, U. Shankar and V. Paxson. Active mapping:
Resisting NIDS evasion withouts altering traffic. 2003.

2A. Atlasis. Attacking ipv6 implementation using fragmentation. 2012.
3J. Novak and S. Sturges. Target-based tcp stream reassembly. 2007, U. Shankar and V. Paxson. Active

mapping: Resisting NIDS evasion withouts altering traffic. 2003.
4G-S. Reen and C. Rossow. DPIFuzz: a differential fuzzing framework to detect DPI elusion strategies for

QUIC. 2020.

7/20

Context
Attacks targetting IDSes using chunking mechanism

Problem
• Attacks targeting IDSes and exploiting data overlap exist5

Existing countermeasure
• manually configure an IDS to associate an IP address with a

reassembly policy
5T. Ptacek and T. Newsham. Insertion, evasion, and denial of service: Eluding network intrusion detection.

1998.

8/20

Context
Considered attack types

Attack type Host Target Reassembled
data

Attack
scenario

Evasion

IDS - E1
Supervised host ✗ "ATTACK"
IDS "AT00CK" E2
Supervised host ✗ "ATTACK"

Insertion

IDS ✗ "ATTACK" I1
Supervised host -
IDS ✗ "ATTACK" I2
Supervised host "AT00CK"

Table 1: Attack type illustration. - means the implementation ignores
the flow chunk data.

9/20

Related work limits

• Manual or semi-automatic (fuzzing, symbolic execution)
methods are used to generate overlap test cases

RQ1. Are these methods exhaustive? If not, can we do better?
• It’s been 10 years no work have specifically addressed OSes’

IPv4 and TCP policy reassemblies
RQ2. Have the reassembly policies of recent OSes changed?

• Some IDSes allow one to configure the host reassembly policy
RQ3. Do such IDSes reassemble consistently with OSes?

9/20

Plan

1 Context

2 Threat model

3 Method

4 Results

10/20

Threat model

Attacker needs to:
• identify victim host OS and IDS reassembly policies.
• craft IP header fields and payload (IP fragment-based attack).
• craft TCP header fields and payload (TCP segment-based

attack).

Attacker
Supervised

host

IDS
Victim network

Internet

10/20

Plan

1 Context

2 Threat model

3 Method

4 Results

11/20

Test case modeling

Relation
R Interpretation Relation

R inverse

X M Y X

Y

1

meets X

Y

1

X Mi Y


non-

overlapping
relationsX B Y X

Y

1

before X

Y

1

X Bi Y

X Eq Y X

Y

1

equal -



overlapping
relations

X O Y X

Y

1

overlap X

Y

1

X Oi Y

X S Y X

Y

1

start X

Y

1

X Si Y

X D Y X

Y

1

during X

Y

1

X Di Y

X F Y X

Y

1

finish X

Y

1

X Fi Y

Table 2: Allen’s interval algebra relations.

12/20

Test case modeling and related works

Relation
R Illustration

X Meets Y X

Y

1

X Before Y X

Y

1

X Equal Y X

Y

1

X Overlaps Y X

Y

1

X Starts Y X

Y

1

X During Y X

Y

1

X F inishes Y X

Y

1

Table 3: Allen’s interval
algebra relations.

→

Work Year Protocol Tested
Allen relations Exhaustivity

Ptaceck et al.
[5] 1998 IPv4 /TCP Fi , D

Shankar et al.
[7] 2003 IPv4 O, Oi , Eq

TCP O, D
Novak

[3] 2005 IPv4 O, Oi , S, Si , F ,
Fi , D, Di , Eq ✓

Novak et al.
[4] 2007 TCP O, Oi , S, Si , F ,

Fi , D, Di , Eq ✓

Atlasis
[1] 2012 IPv6 O, Oi , S, Si , F ,

Fi , D, Di , Eq ✓

Di Paolo et al.
[2] 2023 IPv6 O, Oi , Eq

Us - IPv4/IPv6/
TCP

O, Oi , S, Si , F ,
Fi , D, Di , Eq ✓

Table 4: Summary regarding
overlap-based works.

13/20

Test modes

(O) test case →

tim
e

offset

tim
e

fragment offset

t0

1

t16

5

t10

22

single mode
multiple mode

bit MF = 0

bit MF = 0

IP testing

t0

t1

1 2 3 4

tim
e

seq number
3

tim
e

seq number

t0

1

t17

21
5

t10

4

single mode
multiple mode

TCP testing

t0

t1

t2

14/20

Pyrolyse test pipeline

Easy to extend tool written in ust that implements the
following generic steps:

Payload patterns

AABBCCDD
AABBDDCC

...
DDCCBBAA

Overlap case
description

test-1
...

test-n

test-1.pcap

test-n.pcap

test-1.log

test-n.log

payload_1

payload_n

payload_1

payload_n

policy_1

policy_n

policy_1

policy_n

consistency_1

consistency_n
sig.rules

Payload
extraction

Policy
extraction

Reassembly
obtention

Signature
generation

Payload
extraction

Policy
extraction

Consistency
check

Detection

IDS test

OS test

14/20

Plan

1 Context

2 Threat model

3 Method

4 Results

15/20

Results
OS reassembly policy evolution

OS
Protocol
version

Test case
Testing
mode

Overlapping relation
F Fi S Si O Oi D Di Eq

Windows 10

IPv4 multiple ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
single n ∅ n o ∅ ∅ n o n

IPv6 multiple ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
single n ∅ n o ∅ ∅ n o n

TCP multiple o o o o o o o o o
single o o o o o o o o o

Debian 12

IPv4 multiple ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
single n ∅ n o ∅ ∅ n o n

IPv6 multiple ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
single n ∅ n o ∅ ∅ n o n

TCP multiple n o o o o n n o o
single n o n o o n n o o

SunOS 5.11

IPv4 multiple n o o o o o n o o
single n ∅ n o o o n o n

IPv6 multiple n o o o o o n o o
single n ∅ n o o o n o n

TCP multiple n o n o n o n o n
single n o n o n o n o o

FreeBSD 13.1/
OpenBSD 7.4

IPv4 multiple n o o o o n n o o
single n ∅ n o o n n o n

IPv6 multiple ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
single n ∅ n o ∅ ∅ n o n

TCP multiple n o o o o n n o o
single n o o o o n n o o

16/20

Results
Debian 12 reassembly policy evolution

Protocol
Test case

Testing
mode

Overlapping relation
F Fi S Si O Oi D Di Eq

IPv4
multiple ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
single n ∅ n o ∅ ∅ n o n

IPv6
multiple ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
single n ∅ n o ∅ ∅ n o n

TCP
multiple n o o o o n n o o
single n o n o o n n o o

Table 5: IP and TCP reassembly policies of Debian 12. o means that oldest
fragment data is prefered, n means that newest fragment data is prefered and ∅
means that the OS ignores the overlap. Bold blue means that multiple and single
strategies are reassembled differently. Green (resp. red) means the observed
reassembly is consistent (resp. inconsistent) with latest related works6.

6J. Novak. Target-based fragmentation reassembly. 2005, J. Novak and S. Sturges. Target-based tcp stream
reassembly. 2007, Edoardo Di Paolo, Enrico Bassetti and Angelo Spognardi. “A New Model for Testing IPv6
Fragment Handling”. inEuropean Symposium on Research in Computer Security: Springer. 2023, pages 277–294.

17/20

Results
IDS/OS consistency

Implementation
Rule

file

Test case
Testing Overlapping relation

mode F Fi S Si O Oi D Di Eq

Windows 10 -

multiple

∅∅∅ ∅∅∅ ∅∅∅ ∅∅∅ ∅∅∅ ∅∅∅ ∅∅∅ ∅∅∅ ∅∅∅
Suricata-windows any o o o o o o n o o
Snort-windows any o o o o o o n o o
Zeek - o o o o o o o o o
Windows 10 -

single

n ∅∅∅ n o ∅∅∅ ∅∅∅ n o n
Suricata-windows default n ∅ n o o o n o n
Suricata-windows flow ∅ ∅ ∅ ∅ o o ∅ ∅ ∅
Snort-windows default n ∅ n o o o n o n
Snort-windows flow ∅ ∅ ∅ ∅ o o ∅ ∅ ∅
Zeek - n o n o o o n o n
Debian 12 -

multiple

∅∅∅ ∅∅∅ ∅∅∅ ∅∅∅ ∅∅∅ ∅∅∅ ∅∅∅ ∅∅∅ ∅∅∅
Suricata-linux any n o n n o n n o n
Snort-linux any n o n n o n n o n
Zeek - o o o o o o o o o
Debian 12 -

single

n ∅∅∅ n o ∅∅∅ ∅∅∅ n o n
Suricata-linux default n o n o o n n o n
Suricata-linux flow ∅ o ∅ ∅ o n ∅ ∅ ∅
Snort-linux default n ∅ n o o n n o n
Snort-linux flow ∅ ∅ ∅ ∅ o n ∅ ∅ ∅
Zeek - n o n o o o n o n
SunOS 5.11 -

multiple

n o o o o o n o o
Suricata-solaris any n o o o o o n o o
Snort-solaris any n o o o o o n o o
Zeek - o o o o o o o o o
SunOS 5.11 -

single

n ∅∅∅ n o o o n o n
Suricata-solaris default n o n o o o n o n
Suricata-solaris flow ∅ o ∅ ∅ o o ∅ ∅ ∅
Snort-solaris default n ∅ n o o o n o n
Snort-solaris flow ∅ ∅ ∅ ∅ o o ∅ ∅ ∅
Zeek - n o n o o o n o n
FreeBSD 13.1 -

multiple

n o o o o n n o o
Suricata-bsd any n o o o o n n o o
Snort-bsd any n o o o o n n o o
Zeek - o o o o o o o o o
FreeBSD 13.1 -

single

n ∅∅∅ n o o n n o n
Suricata-bsd default n o n o o o n o n
Suricata-bsd flow ∅ o ∅ ∅ o o ∅ ∅ ∅
Snort-bsd default n ∅ n o o n n o n
Snort-bsd flow ∅ ∅ ∅ ∅ o n ∅ ∅ ∅
Zeek - n o n o o o n o n

Table 6: IDS IPv4 reassembly policy consistency with OSes.

18/20

Results
IDS evasion and insertion attack opportunities

Protocol IDS Reassembly
inconsistencies

Number of OSes w/
possible attack type
Evasion Insertion

IPv4
Suricata 8 (22%) 1/4 4/4
Snort 4 (11%) 0/4 2/4
Zeek 9 (25%) 4/4 1/4

IPv6
Suricata 9 (25%) 0/4 4/4
Snort 6 (17%) 0/4 3/4
Zeek 28 (78%) 4/4 4/4

TCP
Suricata 1 (3%) 1/4 1/4
Snort 1 (3%) 1/4 1/4
Zeek 11 (31%) 3/4 3/4

Table 7: IDS inconsistencies with OS reassemblies and corresponding attack
opportunities for the single test mode.

19/20

Responsible disclosure

Every reassembly inconsistency is a possible security issue
• communication with IDS developers
• Suricata already fixed some misassemblies

20/20

Conclusion and future works

Conclusion
• OS reassembly policies evolve
• overlap-based attacks can still target IDSes → they must take

into account OS reassembly evolutions

Future works
• Investigate n > 2 overlapping chunks
• Target more protocol implementations (e.g., offloaded stacks

on NIC, embedded stacks)

Testing the reassembly consistency of IDS and
OS in the presence of overlapping data

SuperviZ workshop

Thanks!

	Context
	Threat model
	Method
	Results

