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The security life-cycle [1].

N

[1] National Institute of Standards and Technology. The NIST Cybersecurity Framework (CSF) 2.0. 2024
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COLLABORATION IN CYBERSECURITY Introduction

Collaboration pushed by:
common interest (e.g., inter-SOCs');

Security Operational Center.
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Collaboration pushed by:

common interest (e.g., inter-SOCs');

national agencies (e.g., NIST, ENISA, ANSSI);
regulation (e.g., private-public information
sharing in NIS2). P
‘ Detect ‘

Intrusion Detection System (IDS)

IDSs monitor the behavior of a system to detect
malicious activities.

"Security Operational Center.
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Various types of algorithms: supervised, unsupervised, semi-supervised,
reinforcement learning, etc.
Great performance with Deep Learning (DL)...
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MACHINE LEARNING FOR INTRUSION DETECTION Introduction

Various types of algorithms: supervised, unsupervised, semi-supervised,
reinforcement learning, etc.
Great performance with Deep Learning (DL)... on public datasets at least.

Deep neural networks

Challenges of local training: §
not enough labelled data; g Medium neural networks
. : S
risk of local bias or skewed < Shallow neural networks
. . . o
data distribution. Traditional machine learning

A\ 4

Amount of training data
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DATA SHARING TO THE RESCUE?

Introduction

Let’s pool our data! Although...
Privacy concerns.
Lack of trust in the data holder.

Lack of trust in the learning process.
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SCALING INTRUSION DETECTION Introduction

Federated Learning (FL)

Novel-ish distributed ML paradigm (Google) [2].

[2] McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data”. Proceedings of Machine
Learning Research. 2017
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SCALING INTRUSION DETECTION Introduction

Federated Learning (FL)

Novel-ish distributed ML paradigm (Google) [2].
Distributed clients can train a common model without sharing their training data.

Privacy-preserving: high level of abstraction for the shared models preventing data
leakage.

[2] McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data”. Proceedings of Machine
Learning Research. 2017
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Figure: Typical FL workflow, applied to NIDSs.
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CASE STUDY

Collaborative Intrusion Detection between Distributed Organizations

Each organization has its own NIDS? and monitors an information system.

Objective: improve their local detection performance.
Means: expert knowledge (i.e., datasets) and computing resources (i.e,, model

training).

x; 4. Model training

zy

1. Data collection 2. Data processing 3. Data labeling

TR T T

Figure: Typical workflow for ML-based NIDSs.
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CASE STUDY — GENERALIZATION Introduction

A cross-silo use case [3]:

few clients (i.e., 10-100);
substantial amount of data, high heterogeneity;
high availability, significant computing resources.

[3] Kairouz et al. “Advances and Open Problems in Federated Learning”. 2021
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SYSTEMATIC LITERATURE REVIEW Introduction

Challenges from the Literature [4]

Functionality: performance,
heterogeneity, transferability,
self-defense, and self-healing.

[4] Lavaur et al. “The Evolution of Federated Learning-based Intrusion Detection and Mitigation: a Survey”. IEEE Transactions
on Network and Service Management. 2022
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Challenges from the Literature [4]

Functionality: performance,
heterogeneity, transferability,
self-defense, and self-healing.

Deployment: adaptability and
scalability.

Security and reliability: security,
privacy, trust, and reputation.

Experimentation: evaluation.

[4] Lavaur et al. “The Evolution of Federated Learning-based Intrusion Detection and Mitigation: a Survey”. IEEE Transactions
on Network and Service Management. 2022
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SYSTEMATIC LITERATURE REVIEW Introduction
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ADDRESSED CHALLENGES Introduction

:?,: Challenge I: Too much heterogeneity leads to

Sl poor performance... [5]
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Figure: Heterogeneity headaches.

[5] Lavaur, Busnel, and Autrel. “Demo: Highlighting the Limits of Federated Learning in Intrusion Detection”. Proceedings of the
44th International Conference on Distributed Computing Systems (ICDCS). 2024
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Figure: Heterogeneity headaches.

Introduction

Challenge II: Difficult to identify malicious
contributions when models are different...
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ADDRESSED CHALLENGES Introduction
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Figure: Heterogeneity headaches. detection... [6]

[6] Lavaur et al. “Federated Learning as Enabler for Collaborative Security between Not Fully-Trusting Distributed Parties”.
Proceedings of the 29th Computer & Electronics Security Application Rendezvous (C&ESAR). 2022
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Assessing the Impact of Label-Flipping Attacks

[7] Lavaur, Busnel, and Autrel. “Systematic Analysis of Label-flipping Attacks against Federated Learning in Collaborative
Intrusion Detection Systems”. Proceedings of the 19th International Conference on Availability, Reliability and Security (ARES).
2024
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gradient boosting)
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RQ5: IS GRADIENT SIMILARITY ENOUGH TO DETECT LABEL-FLIPPING ATTACKS?

iid_full

Known technique to detect
poisoning attacks [8].

e  Benign %  Malicious

Figure: PCA projection of the gradients in 2D (CICIDS).

[8] Tolpegin et al. “Data Poisoning Attacks Against Federated Learning Systems”. Lecture Notes in Computer Science. 2020
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TAKEAWAYS

Assessment & eiffel

1. A deeper understanding of the behavior of label-flipping attacks in FL-based CIDSs.

Similarity-based detection techniques show limitations in detecting poisoning attacks.

Limited by the models’ generalization capabilities and the characteristic overlap between
classes.

Hyperparameter dependencies, but not on the average performance impact.
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1. A deeper understanding of the behavior of label-flipping attacks in FL-based CIDSs.

Similarity-based detection techniques show limitations in detecting poisoning attacks.

Limited by the models’ generalization capabilities and the characteristic overlap between
classes.

Hyperparameter dependencies, but not on the average performance impact.

2. A reproducible evaluation framework to study the impact of label-flipping attacks in
FIDS using FL.

Reproducible, extendable, and available in open-access®.
Calls to be extended to other poisoning attacks, datasets, and partitioning strategies.

*https://github.com/leolavaur/eiffel

18/35



Fighting Byzantine Contributions in
Heterogeneous Settings

[9] Lavaur et al. “RADAR: Model Quality Assessment for Reputation-aware Collaborative Federated Learning”. Proceedings of
the 43rd International Symposium on Reliable Distributed Systems (SRDS). 2024



CONTEXT RADAR

Case study reminder

Multiple organizations collaborating on a federated Intrusion Detection System.

Partial heterogeneity in the datasets: different data distributions but existing
similarities.
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CONTEXT RADAR

Case study reminder

Multiple organizations collaborating on a federated Intrusion Detection System.

Partial heterogeneity in the datasets: different data distributions but existing
similarities.

Byzantine contributions:

data quality issues (e.g., labelling, noise);
distribution mismatches; and
adversaries, possibly colluding.
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PROBLEM STATEMENT RADAR

Quality Assessment in Heterogeneous Settings

For n participants p; and their local datasets d; of unknown similarity, each participant
uploads a model update w{ at each round r. Given P = {p1,p2,...,pn} and

W= {wi,wi,...,w,}, how can one assess the quality of each participant's contribution
without making assumptions on the data distribution across the datasets d;?

21/35



EXISTING SOLUTIONS RADAR

Server-side evaluation [10]

Only applicable in IID settings.

Single source of truth.

[10] Zhou et al. “A Differentially Private Federated Learning Model against Poisoning Attacks in Edge Computing”. IEEE
Transactions on Dependable and Secure Computing. 2022

22/35



EXISTING SOLUTIONS RADAR

Server-side evaluation [10] Server-side comparison [11]
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Server

Only applicable in IID settings. Less related to client data.

Single source of truth.

[10] Zhou et al. “A Differentially Private Federated Learning Model against Poisoning Attacks in Edge Computing”. IEEE
Transactions on Dependable and Secure Computing. 2022
[11] Briggs, Fan, and Andras. “Federated Learning with Hierarchical Clustering of Local Updates to Improve Training on Non-11D

Data”. 2020 International Joint Conference on Neural Networks (IJCNN). 2020 /
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Server

Only applicable in IID settings.

Single source of truth.

Server-side comparison [11]
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RADAR

Client-side evaluation [12]
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High cost in cross-device.

More susceptible to
badmouthing.

[10] Zhou et al. “A Differentially Private Federated Learning Model against Poisoning Attacks in Edge Computing”. IEEE
Transactions on Dependable and Secure Computing. 2022

[11] Briggs, Fan, and Andras. “Federated Learning with Hierarchical Clustering of Local Updates to Improve Training on Non-11D
Data”. 2020 International Joint Conference on Neural Networks (IJCNN). 2020

[12] Zhao et al. Shielding Collaborative Learning: Mitigating Poisoning Attacks through Client-Side Detection. 2020
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ASSESSING QUALITY WITH CROSS-EVALUATION RADAR

Advantages
g =Lef & e & e e

Exhaustive overview of the entire system at each
B3e13 round r. No need of prior knowledge!
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L e? B of o oF ofl . . .
creieieee Exhaustive overview of the entire system at each
30 :. round r. No need of prior knowledge!
_____ o Evaluations (e.g., accuracy, F1 score)

il gt—— i , racy, F1 <
\\/[ ] representative of participants’ data.
w'|

E,

Drawbacks

[D High communication and computation costs.
o R Al i
”’[ -]51?551 Does not scale well.
Server
) But...
7 ”]: ] ”’L ,,D Cross-silo use case: few clients, with reasonable
SS ;;:; computing capacity.

Slow workflow: long time between rounds.
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FIGHTING HETEROGENEITY WITH CLUSTERING RADAR

Objective

Build more homogeneous communities of participants to facilitate
model aggregation.
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FIGHTING HETEROGENEITY WITH CLUSTERING

RADAR

Objective

Build more homogeneous communities of participants to facilitate

model aggregation.

Distance metric
Based on cross-evaluation results.
Cosine similarity [11].

Algorithm
Hierarchical clustering. [11]
Dynamic aggregation threshold.

Cluster distance

_________________

Figure: Hierarchical clustering.

[11] Briggs, Fan, and Andras. “Federated Learning with Hierarchical Clustering of Local Updates to Improve Training on Non-IID

Data”. 2020 International Joint Conference on Neural Networks (IJCNN). 2020
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REPUTATION-AWARE AGGREGATION RADAR

Definition: Reputation Systems [13]

Long-lived entities expecting future interaction.

Capture and distribution of feedback about current interactions (such information
must be visible in the future).

Use of feedback to guide trust decisions.

[13] Resnick et al. “Reputation Systems”. Communications of the ACM. 2000
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REPUTATION-AWARE AGGREGATION RADAR

Definition: Reputation Systems [13]
Long-lived entities expecting future interaction.

Capture and distribution of feedback about current interactions (such information
must be visible in the future).

Use of feedback to guide trust decisions.

Votes weighted by the similarity inside each cluster.

Exponential decay for potential redemption.

[13] Resnick et al. “Reputation Systems”. Communications of the ACM. 2000
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SETUP: SIMULATING PRACTICAL HETEROGENEITY RADAR ()
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[14] Sarhan, Layeghy, and Portmann. Towards a Standard Feature Set for Network Intrusion Detection System Datasets. 2021
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SETUP: BYZANTINE SCENARIOS

RADAR ()

Parameters
» Target: Affected classes.

» Data Poisoning Rate (DPR):
proportion of targeted data
with flipped labels.

» Model Poisoning Rate (MPR):

number of attackers in the
cluster.
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28/35



RESULTS

Table: Effect of different attack configurations (untargeted) on all baselines. RA is RADAR, FG is
FoolsGold, FA is FedAvg (on all participants), and FC is FedAvg ideally clustered per dataset.

Scenario ASR (%)
RA  FG FA FC

Targeted (100T)

Benign 0.00 517 510 0.09

Lone 0.00 93.82 6.73 0.45

Collud. min. 0.00 297 999 5340

Collud. maj. 73.39 810 1765 5936
Untargeted (100U)

Benign 0.09 039 3330 0.06

Lone 0.08 99.89 5470 012

Collud. min. 010 0.04 4453 6.26

Collud. maj. 0.08 3898 5949 9436

lower is better
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TAKEWAYS RADAR

1. RADAR can:
leverage cross-evaluation, clustering and reputation to address heterogeneity and
Byzantine contributions;
adjust rapidly to changes in behavior; and
mitigate most tested scenarios (limiting case handled up to 80% of poisoned data).
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TAKEWAYS RADAR

1. RADAR can:

leverage cross-evaluation, clustering and reputation to address heterogeneity and
Byzantine contributions;

adjust rapidly to changes in behavior; and

mitigate most tested scenarios (limiting case handled up to 80% of poisoned data).

2. How generic?

Only few conditions: parametric models, locally owned evaluation set, a small-scale use
case, and a trusted central server.

3. Future works:

Remove the central server dependency for increased trust and scalability.
Test the approach in more realistic heterogeneous settings.
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Conclusion
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THANK YOU FOR YOUR ATTENTION!

Improving Intrusion Detection in Distributed Systems with Federated Learning

Three publications in international conferences: ICDCS 2024, ARES (BASS) 2023, and
SRDS 2024.

One article in an international journal: IEEE TNSM.

National and international tutorials on Federated Learning for Intrusion Detection:
EUR CyberSchool's Spring Research School 2023, NoF 2023 and ICDCS 2024.
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EXPERIMENTAL SETUP

Sound experiments [15]; [16]:

valid (i.e., well-defined and unrefutable);
controllable (e.g., parameterized); and

reproducible (i.e., the same results can be obtained by another group using the
author’s artefact).

[15] Uetz et al. “Reproducible and Adaptable Log Data Generation for Sound Cybersecurity Experiments”. Annual Computer
Security Applications Conference. 2021
[16] ACM. Artifact Review and Badging v1.1. 2020



EXPERIMENTAL SETUP

Experiment orchestration using Eiffel [5].

Flower simulation framework [17] for Federated Learning (FL).

Hydra for experiment generation and configuration.

Custom-made poisoning engine with different attack strategies.

Nix [18] and Poetry to fix system and Python dependencies, enabling reproducibility.

1,067 experiments x 10 seeds (1,613 hours of computation.)

[17] Beutel et al. “Flower: A Friendly Federated Learning Research Framework”. 2020
[18] Dolstra. “The Purely Functional Software Deployment Model”. 2006



RQ1: ARE POISONING ATTACKS PREDICTABLE?

Accuracy per seed (£=10, 8 = 32) Accuracy per seed (£=10, 8 = 512)
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Figure: Predictability of label-flipping attacks.

Very high variance in the results, but tends to stabilize (on different values) after a
few rounds.
The impact of the attack is highly dependent on the seed.

— Initial parameters, data shuffling, partitioning, ...



RQ2: DO HYPERPARAMETERS INFLUENCE THE IMPACT OF POISONING ATTACKS?
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Figure: Effect of the hyperparameters on the accuracy of the poisoned model in the late scenario

(50% attackers, CICIDS).

late-3 scenario: attackers start poisoning after 3 rounds

High batch size leads to more inertia, less instantaneous impact

— More impactful in constrained environments



Extra Slides

RADAR



RESULTS
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Figure: Baseline comparison.
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Figure: RADAR’s limiting scenario.
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