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Information Security Introduction
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The security life-cycle [1].

[1] National Institute of Standards and Technology. The NIST Cybersecurity Framework (CSF) 2.0. 2024
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Collaboration in Cybersecurity Introduction

I Collaboration pushed by:
• common interest (e.g., inter-SOCs1);

• national agencies (e.g., NIST, ENISA, ANSSI);
• regulation (e.g., private-public information
sharing in NIS2).

Intrusion Detection System (IDS)
IDSs monitor the behavior of a system to detect
malicious activities.

1Security Operational Center.
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Machine Learning for Intrusion Detection Introduction

I Various types of algorithms: supervised, unsupervised, semi-supervised,
reinforcement learning, etc.

I Great performance with Deep Learning (DL)…

on public datasets at least.

Challenges of local training:
I not enough labelled data;
I risk of local bias or skewed
data distribution. Traditional machine learning

Shallow neural networks

Medium neural networks

Deep neural networks

Amount of training data
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Data Sharing to the Rescue? Introduction

Let’s pool our data!

Although…
I Privacy concerns.
I Lack of trust in the data holder.
I Lack of trust in the learning process.
I …
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Scaling Intrusion Detection Introduction

Federated Learning (FL)

I Novel-ish distributed ML paradigm (Google) [2].

I Distributed clients can train a common model without sharing their training data.
I Privacy-preserving: high level of abstraction for the shared models preventing data
leakage.

[2] McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data”. Proceedings of Machine
Learning Research. 2017
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Case Study Introduction

Collaborative Intrusion Detection between Distributed Organizations

I Each organization has its own NIDS2 and monitors an information system.

I Objective: improve their local detection performance.
I Means: expert knowledge (i.e., datasets) and computing resources (i.e., model
training).
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Case Study – Generalization Introduction

A cross-silo use case [3]:

I few clients (i.e., 10–100);
I substantial amount of data, high heterogeneity;
I high availability, significant computing resources.

[3] Kairouz et al. “Advances and Open Problems in Federated Learning”. 2021
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Systematic Literature Review Introduction

Challenges from the Literature [4]
I Functionality: performance,
heterogeneity, transferability,
self-defense, and self-healing.

I Deployment: adaptability and
scalability.

I Security and reliability: security,
privacy, trust, and reputation.

I Experimentation: evaluation.

[4] Lavaur et al. “The Evolution of Federated Learning-based Intrusion Detection and Mitigation: a Survey”. IEEE Transactions
on Network and Service Management. 2022
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Addressed Challenges Introduction

Figure: Heterogeneity headaches.

Challenge I: Too much heterogeneity leads to
poor performance… [5]

Challenge II: Difficult to identify malicious
contributions when models are different…

Challenge III: No representative dataset of
heterogeneous distributed intrusion
detection…

[5] Lavaur, Busnel, and Autrel. “Demo: Highlighting the Limits of Federated Learning in Intrusion Detection”. Proceedings of the
44th International Conference on Distributed Computing Systems (ICDCS). 2024
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E Assessing the Impact of Label-Flipping Attacks

[7] Lavaur, Busnel, and Autrel. “Systematic Analysis of Label-flipping Attacks against Federated Learning in Collaborative
Intrusion Detection Systems”. Proceedings of the 19th International Conference on Availability, Reliability and Security (ARES).
2024



The Problem of Poisoning Attacks Assessment & eiffel E

Figure: Poisoning attacks on FL.
14/35



The Problem of Poisoning Attacks Assessment & eiffel E

Figure: Poisoning attacks on FL.
14/35



The Problem of Poisoning Attacks Assessment & eiffel E

Figure: Poisoning attacks on FL.
14/35



The Problem of Poisoning Attacks Assessment & eiffel E

Figure: Poisoning attacks on FL.
14/35



The Problem of Poisoning Attacks Assessment & eiffel E

Figure: Poisoning attacks on FL.
14/35



The Problem of Poisoning Attacks Assessment & eiffel E

Figure: Poisoning attacks on FL.
14/35



The Problem of Poisoning Attacks Assessment & eiffel E

Figure: Poisoning attacks on FL.
14/35



Characterizing Poisoning Attacks Assessment & eiffel E

Poisoning attacks

Component

I Data poisoning (e.g.,
label-flipping,
clean-label)

I Model poisoning (e.g.,
gradient boosting)

Objective

I Untargeted: impact
model performance

I Targeted: modify
behavior for specific
samples

Proportion

I Single attacker
I Colluding attackers:
multiple coordinated
adversaries
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Scope of the Study Assessment & eiffel E

Existing studies

I Often partial, focusing on challenging a specific defense mechanism.
I Lack of reproducibility and comparability (different datasets, models, and attacks).
I No targeted attacks binary classification.

Research Questions

1. Is the behavior of poisoning attacks predictable?
2. Do hyperparameters influence the impact of poisoning attacks?
3. Are IDS backdoors realistic using label-flipping attacks?
4. Is there a critical threshold where label-flipping attacks begin to impact
performance?

5. Is gradient similarity enough to detect label-flipping attacks?
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RQ5: Is Gradient Similarity Enough to Detect Label-Flipping Attacks?

I Known technique to detect
poisoning attacks [8].

I High heterogeneity makes it harder
to detect attackers.

iid_full iid_drop_1 iid_drop_2 iid_keep_1

kmeans_full kmeans_drop_1 kmeans_drop_2 kmeans_keep_1

Benign Malicious

1Figure: PCA projection of the gradients in 2D (CICIDS).

[8] Tolpegin et al. “Data Poisoning Attacks Against Federated Learning Systems”. Lecture Notes in Computer Science. 2020
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Takeaways Assessment & eiffel E

1. A deeper understanding of the behavior of label-flipping attacks in FL-based CIDSs.
• Similarity-based detection techniques show limitations in detecting poisoning attacks.
• Limited by the models’ generalization capabilities and the characteristic overlap between
classes.

• Hyperparameter dependencies, but not on the average performance impact.

2. A reproducible evaluation framework to study the impact of label-flipping attacks in
FIDS using FL.

• Reproducible, extendable, and available in open-access3.
• Calls to be extended to other poisoning attacks, datasets, and partitioning strategies.

3https://github.com/leolavaur/eiffel
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R Fighting Byzantine Contributions in
Heterogeneous Settings

[9] Lavaur et al. “RADAR: Model Quality Assessment for Reputation-aware Collaborative Federated Learning”. Proceedings of
the 43rd International Symposium on Reliable Distributed Systems (SRDS). 2024



Context RADAR R

Case study reminder

I Multiple organizations collaborating on a federated Intrusion Detection System.
I Partial heterogeneity in the datasets: different data distributions but existing
similarities.

Byzantine contributions:

I data quality issues (e.g., labelling, noise);
I distribution mismatches; and
I adversaries, possibly colluding.
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Problem Statement RADAR R

Quality Assessment in Heterogeneous Settings
For n participants pi and their local datasets di of unknown similarity, each participant
uploads a model update wri at each round r. Given P = {p1,p2, . . . ,pn} and
W = {wr1,wr2, . . . ,wrn}, how can one assess the quality of each participant’s contribution
without making assumptions on the data distribution across the datasets di?

21/35



Existing Solutions RADAR R

Server-side evaluation [10]

I Only applicable in IID settings.

I Single source of truth.

Server-side comparison [11]

I Less related to client data.

Client-side evaluation [12]

I High cost in cross-device.

I More susceptible to
badmouthing.

[10] Zhou et al. “A Differentially Private Federated Learning Model against Poisoning Attacks in Edge Computing”. IEEE
Transactions on Dependable and Secure Computing. 2022
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Introducing RADAR RADAR R

Orchestration

Clustering

Reputation

Aggregation

Local training

Evaluation

Client Server

Models

Evaluation results

Reputation scores

Cluster assignments & similarity

RADAR architecture.
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Assessing Quality with Cross-Evaluation RADAR R

Advantages
I Exhaustive overview of the entire system at each
round r. No need of prior knowledge!

I Evaluations (e.g., accuracy, F1 score)
representative of participants’ data.

Drawbacks
I High communication and computation costs.
I Does not scale well.

But…
I Cross-silo use case: few clients, with reasonable
computing capacity.

I Slow workflow: long time between rounds.
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Fighting Heterogeneity with Clustering RADAR R

Objective
I Build more homogeneous communities of participants to facilitate
model aggregation.

I Distance metric
• Based on cross-evaluation results.
• Cosine similarity [11].

I Algorithm
• Hierarchical clustering. [11]
• Dynamic aggregation threshold.
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Figure: Hierarchical clustering.
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Reputation-aware Aggregation RADAR R

Definition: Reputation Systems [13]
I Long-lived entities expecting future interaction.
I Capture and distribution of feedback about current interactions (such information
must be visible in the future).

I Use of feedback to guide trust decisions.

I Votes weighted by the similarity inside each cluster.
I Exponential decay for potential redemption.

[13] Resnick et al. “Reputation Systems”. Communications of the ACM. 2000
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Setup: Simulating Practical Heterogeneity RADAR R

Datasets
I Heterogeneous datasets, but
some participants can share
similarities.

I 4 datasets: CIC-CSE-IDS2018,
UNSW-NB15, Bot-IoT, ToN_IoT.

I NF-V2 [14] feature set (i.e.,
NetFlow V9).

Bot-IoT

ToN_IoTCIC-CSE-IDS2018

UNSW-NB15

[14] Sarhan, Layeghy, and Portmann. Towards a Standard Feature Set for Network Intrusion Detection System Datasets. 2021
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Setup: Byzantine Scenarios RADAR R

Parameters
I Target: Affected classes.
I Data Poisoning Rate (DPR):
proportion of targeted data
with flipped labels.

I Model Poisoning Rate (MPR):
number of attackers in the
cluster.

Bot-IoT

ToN_IoTCIC-CSE-IDS2018

UNSW-NB15

colluding minority 100T
(i.e., 2 attackers, 100% DPR on Reconnaissance class).
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Results RADAR R

Table: Effect of different attack configurations (untargeted) on all baselines. RA is RADAR, FG is
FoolsGold, FA is FedAvg (on all participants), and FC is FedAvg ideally clustered per dataset.

Scenario ASR (%)
RA FG FA FC

Targeted (100T)
Benign 0.00 5.17 5.10 0.09
Lone 0.00 93.82 6.73 0.45
Collud. min. 0.00 2.97 9.99 53.40
Collud. maj. 73.39 8.10 17.65 59.36

Untargeted (100U)
Benign 0.09 0.39 33.30 0.06
Lone 0.08 99.89 54.70 0.12
Collud. min. 0.10 0.04 44.53 6.26
Collud. maj. 0.08 38.98 59.49 94.36

lower is better
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Takeways RADAR R

1. RADAR can:
• leverage cross-evaluation, clustering and reputation to address heterogeneity and
Byzantine contributions;

• adjust rapidly to changes in behavior; and
• mitigate most tested scenarios (limiting case handled up to 80% of poisoned data).

2. How generic?
• Only few conditions: parametric models, locally owned evaluation set, a small-scale use
case, and a trusted central server.

3. Future works:
• Remove the central server dependency for increased trust and scalability.
• Test the approach in more realistic heterogeneous settings.
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Thank you for your attention!

Improving Intrusion Detection in Distributed Systems with Federated Learning

I Three publications in international conferences: ICDCS 2024, ARES (BASS) 2023, and
SRDS 2024.

I One article in an international journal: IEEE TNSM.
I National and international tutorials on Federated Learning for Intrusion Detection:
EUR CyberSchool’s Spring Research School 2023, NoF 2023 and ICDCS 2024.
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Experimental Setup

Sound experiments [15]; [16]:

I valid (i.e., well-defined and unrefutable);
I controllable (e.g., parameterized); and
I reproducible (i.e., the same results can be obtained by another group using the
author’s artefact).

[15] Uetz et al. “Reproducible and Adaptable Log Data Generation for Sound Cybersecurity Experiments”. Annual Computer
Security Applications Conference. 2021
[16] ACM. Artifact Review and Badging v1.1. 2020



Experimental Setup

Experiment orchestration using Eiffel [5].

I Flower simulation framework [17] for Federated Learning (FL).
I Hydra for experiment generation and configuration.
I Custom-made poisoning engine with different attack strategies.
I Nix [18] and Poetry to fix system and Python dependencies, enabling reproducibility.

1,067 experiments × 10 seeds (1,613 hours of computation.)

[17] Beutel et al. “Flower: A Friendly Federated Learning Research Framework”. 2020
[18] Dolstra. “The Purely Functional Software Deployment Model”. 2006



RQ1: Are Poisoning Attacks Predictable?
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1Figure: Predictability of label-flipping attacks.

I Very high variance in the results, but tends to stabilize (on different values) after a
few rounds.

I The impact of the attack is highly dependent on the seed.
→ Initial parameters, data shuffling, partitioning, …



RQ2: Do Hyperparameters Influence the Impact of Poisoning Attacks?
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Figure: Effect of the hyperparameters on the accuracy of the poisoned model in the late scenario
(50% attackers, CICIDS).

I late-3 scenario: attackers start poisoning after 3 rounds
I High batch size leads to more inertia, less instantaneous impact

→ More impactful in constrained environments
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Results

Figure: Baseline comparison.

Figure: RADAR’s limiting scenario.
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