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Introduction

This report summarizes the research efforts of the postdoctoral project PO3.1, which was part
of Lot 3 within the Superviz project (ANR-22-PECY-0008) supported by the French National
Research Agency under the France 2030 label. The primary objective of PO3.1 was to design
and implement a prototype of an AI-based intrusion response system capable of reacting to
ongoing network attacks in real time. The motivation for pursuing this line of research lies in
the growing difficulty of providing timely and effective responses to such attacks within modern,
complex network environments.

Today’s network architectures generate enormous volumes of traffic, and as a result, cy-
bersecurity analysts working in security operation centers (SOC) are overwhelmed with alerts
produced by monitoring tools such as Intrusion Detection Systems (IDS) [14]. Recent reports
have emphasized that this flood of alerts not only prolongs response times but also reduces ana-
lysts’ ability to reliably distinguish between false positives and genuine threats. Consequently,
the effectiveness of current defensive strategies is diminished.

This highlights a significant shortcoming in existing aggregation and analysis tools, which at
present are inadequate in translating incoming alerts into actionable responses. To address this
gap, the research efforts of PO3.1 were directed toward a network-level approach. Specifically,
the goal was to design a system (or rather, a family of systems) capable of processing IDS alerts
and transforming them into network-level countermeasures.

Over the course of this postdoctoral project, the research objectives evolved based on newly
identified gaps and opportunities. A fundamental issue that emerged was the absence of stan-
dardized testbeds for evaluating the performance of intrusion response systems. A review of
the existing literature revealed that many studies rely on ad hoc simulations or custom-built
testbeds for evaluation.

This practice introduces several limitations. In particular, the networks and attack scenarios
used in such evaluations are often oversimplified in order to facilitate simulations. As a result,
intrusion response systems are assessed under unrealistic conditions, which makes it difficult to
compare results across different research efforts. Furthermore, while the cybersecurity commu-
nity has produced a wealth of IDS datasets over the years, these remain largely unused in the
evaluation of intrusion response.

To address these shortcomings, an additional goal was added to project : the development

ANR-22-PECY-0008 – SuperViz 3 15/09/2025
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of an evaluation approach for our proposed intrusion response systems that leverages existing
IDS dataset. This direction not only strengthens the evaluation methodology of PO3.1 but also
contributes to Superviz by proposing a foundation for more consistent benchmarking in the field.

Problem description and research questions

The research conducted within PO3.1 was guided by two central research questions.

RQ1 : How can IDS alerts be translated into practical response actions ?

RQ2 : How can existing IDS datasets be leveraged to evaluate intrusion response solu-
tions ?

In addressing these questions, the project maintained a scope centered on network-level alerts
and responses. To this end, this research introduced the concept of network intrusion response
systems (NIRS) : a family of systems designed to aggregate alerts generated by network IDS
(NIDS) and transform these alerts into automated rule updates for firewalls or intrusion pre-
vention systems (IPS). Additionally, a unified evaluation protocol was introduced for assessing
NIRS performance using public IDS datasets. The proposed evaluation protocol models intru-
sion response as a binary decision problem, where a network connection can be either accepted
or blocked by the existing set of firewall/IPS rules. While the problem remains fundamentally
different from intrusion detection—since it requires to accept or block future traffic based on
present alerts—this evaluation framework naturally induces performance metrics that are ana-
logous to the concepts of true positives and false positives in intrusion detection. This, in turn,
allows to compare different NIRS solutions and calculate objective metrics for their performance.

Link with other activities within Superviz

The research carried out within the scope of PO3.1 aligned with broader efforts in Superviz,
particularly concerning the analysis and exploitability of existing IDS datasets. In addition to
proposing a methodology that enables the use of public IDS datasets for intrusion response
evaluation, the work included a detailed examination of the datasets themselves.

This analysis focused on understanding the characteristics of different datasets and assessing
how these traits influence their suitability for the proposed evaluation protocol. Attention was
also given to identifying and addressing potential limitations, such as inherent biases, missing
information, or inconsistencies, all of which can significantly undermine the validity of benchmark
evaluations. By explicitly accounting for these issues, the project contributes not only a technical
methodology but also a critical perspective on the strengths and weaknesses of the resources
commonly employed in intrusion detection and response research.

ANR-22-PECY-0008 – SuperViz 4 15/09/2025
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Chapitre 1

Background

1.1 Intrusion detection systems

Intrusion Detection Systems (IDS) are security tools designed to monitor hosts or networks
in order to detect malicious activity. IDS can be classified along two main dimensions. The first
dimension relates to their scope. IDS that operate at the host level are referred to as host-based
IDS (HIDS), while those that monitor network activity are called network IDS (NIDS). These
terms, however, can sometimes be misleading. For example, NIDS may be deployed to monitor
traffic associated with a single host. The fundamental distinction is that NIDS rely exclusively on
network-level data—mainly network traffic—to identify intrusions, whereas HIDS use host-level
information such as system logs or application data.

The second dimension of classification concerns the detection methodology. Signature-based
IDS identify malicious activity by matching incoming traffic against a database of known at-
tack patterns. By contrast, anomaly-based IDS detect threats by identifying deviations from
established models of normal traffic behavior. Each approach has its strengths and limitations :
signature-based systems are effective in recognizing known attacks, while anomaly-based systems
are better suited to identifying zero-day attacks or other attacks whose signature is unavailable.

Given that this research focuses on network-level attack signals and corresponding response
actions, NIDS were identified as the most appropriate foundation for the intrusion response
framework developed in this project.

1.1.1 Machine learning-based NIDS

The most widely used network intrusion detection systems (NIDS) are signature-based, with
tools such as Snort, Suricata, and Zeek being standard in both research and practice. These
systems rely on expert-crafted rules to match incoming traffic against known attack patterns.
However, the growing diversity and sophistication of attacks has made it increasingly difficult
to maintain comprehensive rule sets. Moreover, the notion of what constitutes an “attack” is

ANR-22-PECY-0008 – SuperViz 5 15/09/2025
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Figure 1.1: Venn diagram of NIDS categories.

highly context-dependent. For example, a level of traffic that would overwhelm a small business
in a distributed denial-of-service (DDoS) scenario may simply correspond to the release of a new
popular series for a large-scale streaming service.

To address these limitations, machine learning (ML) techniques have become increasingly
popular in intrusion detection. Instead of relying on manually defined signatures, ml-based ap-
proaches learn patterns of benign and malicious traffic directly from data. From an ML pers-
pective, network intrusion detection can be formulated as a binary classification problem : given
a set of features representing traffic, the model predicts whether it is benign (typically encoded
as 0) or malicious (typically encoded as 1).

While ML-based NIDS move away from static rules, they are not all anomaly-based in the
strict sense described earlier. Instead, they can be divided into two broad families : supervised
and unsupervised. Supervised methods require labeled traffic data containing examples of both
normal activity and attacks. Models such as random forests and gradient-boosted trees fall into
this category. These systems remain, in a sense, signature-based, as they learn to recognize
attacks from past examples. In contrast, unsupervised approaches operate on unlabeled traffic,
under the assumption that the majority of the observed data is normal. They infer patterns of
typical network behavior and flag abnormal deviations as potential intrusions. The most widely
used unsupervised NIDS rely on autoencoders to iteratively compress and reconstruct traffic,
comparing the reconstruction error to a threshold to identify anomalies.

Supervised ML-based NIDS generally achieve strong performance in closed-world settings,
where the training data closely matches the environment in which they are deployed. Unsuper-
vised ML-based NIDS are typically less accurate but more adaptable, since they can be trained
directly on the traffic of the monitored network. This makes them suitable for open-world sce-
narios, where labeled data is unavailable. The taxonomy of NIDS introduced in the paragraphs
above is summarized in fig. 1.1.

ANR-22-PECY-0008 – SuperViz 6 15/09/2025



SuperViz
Livrable L3.4
Postdoc report (PO3.1): Symptomatic Response to Network Attacks

1.1.2 Network flow analysis

An ML-based NIDS is essentially a function D : X → {0, 1} where X is the feature space
representing the input traffic and {0, 1} is the (binary) set of classes. The features used to
encode traffic greatly vary across the various proposed solutions, and they may describe different
elements of network traffic. For example, a feature vector x may describe a single packet, an
aggregation of packets, or a time series. However, the most common approach in the literature
is to utilize aggregated metrics that describe an entire connection between two hosts, which are
called network flows. A network flow x is a tuple

x = (t, src_ip, src_port, dst_ip, dst_port, protocol, . . . ) (1.1)

where t is the first packet’s timestamp in the flow, src_ip (src_port) and dst_ip (dst_port)
are the the source and destination IP addresses (ports), and protocol is the network protocol
used by the two hosts to communicate. Other information included in a flow can vary depending
on the tool used for monitoring the network traffic (e.g., CICFlowMeter, Zeek, NFStream 1).
Tools that extract flow information from network traffic are commonly called flow-meters.

1.2 Intrusion response

1.2.1 Intrusion prevention versus intrusion response

It is important to distinguish the role of intrusion prevention and intrusion response. Intrusion
prevention focuses on blocking attacks before they reach their target systems. A common example
is a firewall, which can filter traffic at the network perimeter by allowing or denying connections
based on parameters such as IP addresses, ports, or protocols. In addition, some IDS that operate
at the packet level, such as Snort, can operate in prevention mode as intrusion prevention systems
(IPS). In this configuration, the system does not simply generate alerts but actively drops traffic
that matches a detection rule.

The essential distinction between IPS and IRS lies in the timing of their actions. An IPS
operates preemptively, attempting to stop malicious traffic before it ever reaches the protected
system. An IRS, by contrast, focuses on responding once an attack is already underway, adapting
its countermeasures based on the alerts and evidence generated during the incident. A form of
intrusion response may consist in updating the IPS configuration according to the received alerts.

1. https://github.com/UNBCIC/CICFlowMeter, https://zeek.org/,
https://www.nfstream.org/
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Chapitre 2

Related work

A preliminary analysis of the existing literature revealed that intrusion response systems
greatly vary on many aspects. In this review section, we focus on three of them, namely the
types of response action, evaluation methodologies, and metrics.

2.0.1 Response actions

The first dimension that we investigate is the range of response actions that have been
proposed to mitigate attacks. We found that these can be categorized into three main groups
based on the level of control they exercise on the network. More specifically, some solutions
require privileged access to many (or all) hosts and components in the network. Others require
to set up additional software or hardware components. Clearly, this can impact the feasibility of
their deployment and the willingness of network administrators to adopt such solutions.

Firewall-based responses requires the least level of control. They typically, interact with
existing routers or firewalls [13] to block or redirect traffic.

SDN-based responses require the presence of a software defined networking (SDN) infrastruc-
ture. This allows fine-grained and dynamic control over network traffic, e.g., by dynamically
rerouting packets or applying rate limits [11, 12]. On the other hand, the infrastructure requi-
rements limit their applicability. At the time of writing, only a minority real-world networks
implement SDNs.

Host-level responses assume the ability to intervene directly on hosts, either via some standa-
lone application running on each host, or via some form of centralized control. Response actions
include patch deployment, service restart, process isolation, or migration [5, 20]. Such approaches
offer rich recovery options but require privileged access and strong orchestration capabilities.

2.0.2 Evaluation methodologies

The methods used to evaluate IRS is also not standardized. This is an important problem,
especially when statistical approaches – such as machine learning-based ones – need to be com-

ANR-22-PECY-0008 – SuperViz 8 15/09/2025
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Figure 2.1: Aspects of intrusion response investigated in the literature review.

pared. To emphasize how relevant this is, it may be useful to draw a comparison with IDS
evaluation. In the case of IDS, the common approach is to utilize benchmark datasets such as
CIC-IDS 2017 or UNSW-NB15. The datasets are splitting into training and test sets, and the
IDS model is first trained on one set and evaluated on the other. It is now well-established that
temporal splitting should be used to analyze the IDS behavior for non-stationary traffic. Also,
later works have also implemented concept drift analysis and robustness against adversarial
examples [2]. This evaluation allows to effectively gauge the strength of an IDS model based on
benchmark results. Even if two papers use different datasets, one can still make a comparison
based on known characteristics or biases of the various datasets.

In the case of IRS, some papers focus on providing a theoretical analysis of their proposed
IRS solution [7, 19]. Theoretical analyses require to make abstractions and assumptions to frame
the proposed IRS within a mathematical model. However, an analysis that is purely theoretical
does not allow to determine the strength of the proposed solution is real-world deployments,
where the assumptions made may not hold.

Other works use simulated environments [20], which are used to model essential aspects of
a system. However, most of these simulators are not publicly available, with notable exceptions
such as MiniCPS [1] and CyberBattleSim [17]. This limits the reproducibility of the results and
does not allow comparison with other IRS solutions.

Virtualized testbeds are the closest tools to real-world testing, creating more realistic sce-
narios using virtual machines [13], containers, or network emulation platforms (e.g., GNS3 as
in [5]). However, testbeds are also rarely released publicly. Additionally, their scope is often
limited to small networks due to hardware limitations.

ANR-22-PECY-0008 – SuperViz 9 15/09/2025
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2.0.3 Metrics

Another aspect where IRS evaluation falls short compared to IDS is the performance metrics.
Intrusion detection is modeled as a binary classification problem 1. This binary model yields a
set of metrics that can be used to evaluate the IDS output. It is well understood that there
are two types of correct predictions (true positives and true negatives) and two types of wrong
predictions (false positives and false negatives). The metrics used to evaluate an IDS (accuracy,
precision, true-positive rate, false-positive rate, etc.) are meant to provide a complete statistical
description of these four output types.

In the case of IRS, intuition suggests that some analogous metrics should exist. However,
in practice there is a lot of nuance when it comes to measure the impact of intrusion response
techniques on a system. This is also linked with the diverse nature of IRS solutions. Obviously,
attack-related indicators are often reported, such as the percentage of blocked attacks [13] or
the final stage reached in a multi-stage attack scenario [5].

Another aspect that is occasionally analyzed is response time, which assesses how quickly
the system reacts to a threat [6].

QoS-related indicators are adopted in some cases to quantify the impact of the response on
legitimate traffic. These include metrics such as preserved throughput, increased latency, or false
positive disruption [11].

IRS solutions for cyber-physical or industrial settings also measure physical-level indicators,
which reflect the safety of physical processes (e.g., likelihood of tank overflows [12] or power
load issues [7]).

Finally, some specific types of solutions RL-based and game-theoretic IRS use custom re-
ward or utility functions. These are used to guide the decision-making process, but they are
also employed as evaluation metrics. These functions typically integrate multiple heterogeneous
objectives and tend to be system-specific [11, 20]. According to the principle “when a measure
becomes a target, it ceases to be a good measure,” these latter metrics should not be used for
evaluation.

2.1 Research gaps and opportunities

One conclusion that can be drawn from the above review is that IRS solutions suffer from a
lack of standardized practices. Drawing again a comparison with IDS (more specifically a network
IDS (NIDS)), when a new NIDS solution is proposed, the context is always well understood : the
system is meant to analyze network traffic – likely in the form of network flows – and generate
predictions ; it is run on common benchmark datasets (CIC-IDS 2017, UNSW-NB15, etc.) ; and,

1. In some cases both binary and multiclass analyses are carried out, where each class represents a different
attack or family of attacks. However, the binary analysis is consistent across the vast majority of proposed
solutions, while the multiclass analysis is less common.

ANR-22-PECY-0008 – SuperViz 10 15/09/2025
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finally, its predictions on these datasets are categorized according to the dataset’s ground-truth
labels.

Since all the above information is known and widely established, this allows to conduct a
deeper analysis on more nuanced aspects, such as “Is the NIDS model robust against concept
drift ? Is it prone to adversarial inputs ? How do dataset biases impact performance metrics ?”

In the case of IRS, the common setting is missing, and (almost) each paper comes with a
different set of response strategies, evaluation methodologies, and performance metrics. This is a
large obstacle to the creation of a common body of knowledge on intrusion response – especially
in the case of ML-driven solutions.

Another aspect often missing in existing solution is a mapping between alerts raised by NIDS
and the proposed response action. ML-based NIDS, according to benchmarks, yield highly ac-
curate predictions, which however are often difficult to explain. Few works have investigated
whether it is possible to find an adequate response to these alerts, despite the lack of explaina-
bility [18].

These gaps led to the identification of the two research questions, RQ1 and RQ2, described
in the introduction of this report.

ANR-22-PECY-0008 – SuperViz 11 15/09/2025
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Chapitre 3

Proposed solution : NIRS

To address the problem of the lack of standardization in intrusion response systems, it is
necessary to introduce more scoped definitions of IRS. As this research focuses on bridging the
gap between network IDS and intrusion response, this naturally leads to defining a family of
IRS that reasons and acts at the network level.

In analogy with network IDS (NIDS), systems that belong to these family are named network
intrusion response systems (NIRS).

3.1 Philosophy and assumptions of NIRS

The core idea of NIRS is to extract network-level rules, more specifically firewall rules, based
on NIDS predictions. Clearly, these systems should account for possible mistakes among these
predictions. On the other hand, they should also operate under the assumption that the majority
of these alerts are correct.

Let us consider a set of connections labeled by a NIDS. This set would look as the examples
shown in Table 3.1. Assuming a flow-level analysis, each connection is characterized by an initial
timestamp t, source IP, destination IP, and other indicators. Additionally, each connection is
associated with a predicted label ŷ (either “normal” (ŷ = 0) or “attack” (ŷ = 1)).

With this setting in mind, the objective of NIRS is to update the firewall rules to mitigate
possible ongoing attacks. Since the alerts analyzed by NIRS are related to flows that have already
bypassed the firewall rules currently in place. Therefore, the rule update should aim to block
future alerts of similar nature.

Considering the example in Table 3.1, it is easy to see that most alerts relate to src_ip

18.184.104.180. It appears that this IP is attempting to connect to TCP port 22 (default SSH
port) of different IP addresses in the monitored network. Multiple alerts towards this port in
a short time period may be a sign of an SSH bruteforce attempt. There is also one alert from
52.29.177.21, directed towards port 8000 of one host in the monitored network. However, several
connections of similar nature where not flagged as alerts. Therefore, this might simply be a false

ANR-22-PECY-0008 – SuperViz 12 15/09/2025
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t src_ip src port dst_ip dst_port protocol ŷ

1556172725 52.59.177.21 42966 192.168.1.30 8000 tcp 1
1556173067 52.59.177.21 42987 192.168.1.30 8000 tcp 0
1556173461 18.184.104.180 34532 192.168.1.30 8000 tcp 0
1556173488 52.59.177.21 43374 192.168.1.30 8000 tcp 0
1556340863 52.59.177.21 43693 192.168.1.30 8000 tcp 0
1556340869 18.194.169.124 50204 192.168.1.32 8000 tcp 0
1556340880 18.184.104.180 43862 192.168.1.30 22 tcp 1
1556340887 18.184.104.180 43904 192.168.1.30 8000 tcp 0
1556340895 18.184.104.180 45016 192.168.1.32 22 tcp 1
1556340953 18.184.104.180 45124 192.168.1.32 22 tcp 1
1556548974 74.125.109.8 11 192.168.1.34 - icmp 0
... ... ... ... ... ... ...

Table 3.1: Example of a NIDS output.

positive.
Based on this information, NIRS should find the most fitting rule update. It should ensure

that the update would prevent most of the alerts without disrupting regular traffic. This task
is far from trivial. Even after the above discussion, it is still unclear what kind of new rules
should be put in place using the information available in Table 3.1. Should the rule update block
all TCP connections with destination port 22 ? This might disrupt legitimate SSH connections.
Should it block only connections from 18.184.104.180 ? The attackers may use a proxy or a VPN
to change their IP address.

Since the decision is not trivial, different types of heuristics or AI systems could be employed
to select the rule update. The definition of NIRS that is provided below aims to encapsulate all
these possible systems under a common setup, allowing to evaluate and compare them.

3.2 Definition of NIRS

As NIRS are meant to update firewall rules, these should be formalized first. A set of firewall
rules, or ruleset, can be defined as a map r : X→ {0, 1}. Given a connection x this is either let
through (b̂ = 0) or blocked (b̂ = 1) by the ruleset, i.e. r(x) = b̂. This definition can be applied
to both packets and network flows with some caveats. If x is a packet, firewall rules that are
based on rates cannot be represented if x is the only input to r. However, this can be solved by
including a “state” variable σ to the input. If x is a network flow, there might be cases where
a rule blocks only some of its packets. In such cases, the flow is considered blocked, while it is
considered let through only if none of its packets are blocked.

Since the ruleset can be updated over time, this means that the function r is time-dependent.
The notation rt can be used to denote the ruleset function at time t. A network intrusion response

ANR-22-PECY-0008 – SuperViz 13 15/09/2025
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Figure 3.1: Proposed network intrusion response workflow.

system (NIRS) can thus be defined as a function R that maps

(rt, X̄A, X̄N ) 7→ rt+∆t = R(rt, X̄A, X̄N ) (3.1)

with input :
— rt : The network ruleset at time t.
— X̄A : A set of network connections {x̄A,1, x̄A,2, . . .} that were labeled as alerts by a network

intrusion detection system (NIDS).
— X̄N : A set of network connections {x̄N,1, x̄N,2, . . .} that were labeled as normal traffic by

a NIDS.
and output :

— rt+∆t : An updated network ruleset. ∆t > 0 is the time elapsed between the the enforce-
ment of two rulesets.

3.3 Deployment and workflow

While the formal definition is meant to be general and flexible, it is sensible to also provide
a general workflow for the practical deployment of NIRS. This workflow is shown in fig. 3.1.
Network traffic between two hosts – one internal and one external to the monitored network –
passes through a firewall with ruleset rt. Any connection x that is not dropped by the firewall 1 is
monitored by the NIDS D, which labels it as an alert or normal traffic. The labeled connection

1. It is worth noting that while the discussion is focused around firewall, the provided definition of ruleset
applies also to IPS. Therefore, NIRS can be integrated with tools like Snort (operating in IPS mode).
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x̄ is added to a data store. Alerts and normal connections are queried from the data store
and processed by the NIRS R, which proposes a ruleset update rt+∆t. The proposed update
is then evaluated by a security analyst, who finally decides whether to update the current
ruleset. Clearly, when evaluating R, the human in the loop is ignored and the proposed updates
are always assumed to be accepted. While the use of response systems to dynamically update
firewalls is not new [13], framing these solutions using a formal framework helps facilitating their
comparison.

3.4 Evaluation metrics

The impact of NIRS ruleset on network connections can be divided into four categories,
mirroring the conventional classification of NIDS outputs into true positives, true negatives,
false positives, and false negatives. Specifically, given a NIRS actions on a portion of network
traffic, we can count the number of connections that are : correctly accepted (CA), wrongly
accepted (WA), correctly blocked (CB), and wrongly blocked (WB). These values can be used
to calculate NIRS performance metrics : the correct block rate (CBR), i.e., the proportion of
malicious traffic that is correctly blocked

CBR =
CB

CB + WA
(3.2)

and the wrong block rate (WBR), i.e., the proportion of benign traffic that is incorrectly blocked

WBR =
WB

WB + CA
(3.3)

These metrics are analogous to TPR and FPR, respectively, for NIDS. Both CBR and WBR can
be computed either per-packet or per-flow. Other metrics such as precision, balanced accuracy,
and F1-score can also be computed.

3.5 Evaluation methodology

3.5.1 Evaluation setup

Like other types of intrusion response systems, NIRS can be evaluated using interactive
testbeds. However, a key advantage of NIRS is that they can also be evaluated on public NIDS
datasets. A NIDS dataset D = {(xi, yi)}ni=1 is a sequence connections xi and their ground-truth
labels yi. A NIRS can be evaluated on these datasets by iterating over labeled connections
(xi, yi). Their ground-truth label of each connection xi is compared to the decision bi, taken
according to the ruleset rt in place at timestamp ti.

As mentioned in §1.2, an important aspect to be considered in NIRS evaluation is that in-
trusion response is not retroactive. A ruleset update happens as a consequence of NIDS alerts.
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However, the updated ruleset will be set in place only after the alert has ended. In other words,
the connection raising the NIRS alert is not blocked by the update ; only future connections
are affected. This time dependency should be taken into account during the evaluation. Conse-
quently, flows should be processed in order of their timestamps to emulate a real-time scenario.
Furthermore, the specifics of the NIRS implementation should also be considered in the evalua-
tion. For example, for a NIRS R that updates rt at a constant rate ∆t, the connections can be
evaluated in batches covering time ranges of size ∆t, as described by Algorithm 1.

For each connection xi with timestamp ti ∈ [t, t+ ∆t], the algorithm first checks whether it
is blocked by the current ruleset rt (i.e., if bi = rt(xi) is 1). After verifying whether xi is blocked,
one of the counters (CB, WB, CA, WA) is updated depending on the values of bi and the ground
truth yi. If xi is blocked, no further step is needed. Otherwise, xi is given as input to the NIDS
D to obtain a prediction ŷi = D(xi). xi is then added to X̄A or X̄N depending on the value
of ŷi. When all the connections in the current time range have been processed, the NIRS R is
invoked to update the ruleset. It should be noted that this algorithm does not account for the
ruleset-installation time—i.e., the time τ employed by R to generate and install a new ruleset.
In our experimental setup, this does not impact the evaluation, as ∆t � τ for both our baseline
NIRS. However, more complex NIRS may need to account for it by extending the time range of
rt to [t, t+ ∆t + τ ], but using only [t, t+ ∆t] to update X̄A and X̄N .

3.5.2 Limitations

While metrics such as the CBR and WBR provide a quantitative measure of a NIRS’s
performance, they are not sufficient on their own to determine whether an attack has been
effectively mitigated. In the case of DoS, a high rate of blocked connections typically correlates
with reduced service disruption, offering a relatively clear indication of successful mitigation.
However, this relationship does not hold across all attack types, and more nuanced evaluation
protocols are needed when focusing on specific attack vectors. Still, CBR and WBR remain
valuable as general-purpose metrics, allowing for broad comparisons across different families
of attacks. Another aspect to be considered is related to NIDS datasets. While dataset-based
evaluation is probably one of the strongest advantages of NIRS, it still presents limitations.
Datasets do not account for adaptive adversaries who deliberately attempt to evade detection and
response mechanisms. Modeling such adversaries is complex, especially within the constraints of
pre-collected data. This limitation is not unique to NIRS, but rather affects most data-driven
approaches to cybersecurity.

3.6 Including NIRS in more complex solutions

NIRS are not intended to function as standalone components, much like how NIDS should
not be the only systems in place to monitor the network. In network security, it is widely reco-
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Algorithm 1 NIRS evaluation on a dataset D with constant ∆t

Require: Dataset D = {(xi, yi)}ni=1 of connections and ground-truth labels, NIDS D, NIRS R,
update interval ∆t.

1: Initialize empty sets X̄A ← ∅, X̄N ← ∅
2: tmin ← mini=1,...,n ti, tmax ← maxi=1,...,n ti
3: Initialize time t← tmin

4: Set initial ruleset rt . E.g., initialize rt to always output 0 (accept all traffic)
5: Initialize CB← 0, WB← 0, CA← 0, WA← 0
6: while t ≤ tmax do
7: for each xi where t ≤ ti ≤ t+ ∆t do
8: bi ← rt(xi) . Check if xi is blocked by current ruleset
9: if bi = 1 then

10: if yi = 1 then CB←CB+1 . Compare with ground truth
11: else WB←WB+1
12: end if
13: else
14: if yi = 1 then WA←WA+1
15: else CA←CA+1
16: end if
17: end if
18: ŷi ← D(xi)
19: if ŷi = 1 then X̄A ← X̄A ∪ {xi} . Update X̄A, X̄N based on the NIDS output
20: else X̄N ← X̄N ∪ {xi}
21: end if
22: end for
23: rt+∆t ← R(rt, X̄A, X̄N ) . Update ruleset
24: t← t+ ∆t . Update current time
25: end while
26: return CB, WB, CA, WA

gnized that no single solution can address all scenarios ; instead, components must be integrated
into broader, more complex architectures tailored to the specific needs of the system [16]. For
instance, in large enterprise environments where the volume of alerts can overwhelm security
analysts, NIRS could serve as alert aggregation tools that distill raw NIDS alerts into actio-
nable summaries and predefined response strategies. In such deployments, the output of a NIRS
might be redirected into a Security Information and Event Management (SIEM) platform or a
log search engine like Elasticsearch. Whitelisting mechanisms could also be integrated to avoid
blocking critical connections.
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Chapitre 4

NIRS implementation

The NIRS presented in this report are based on a common window-based analysis of NIDS
outputs. According to the general definition given in §3.2, NIRS require a ruleset rt to update
and two sets of connections : X̄N for regular connections, and X̄A for alerts.

4.1 Window-based analysis

In the setup chosen for our experiments, the two sets X̄N and X̄A are selected using two
windows, as shown in fig. 4.1.

The normal traffic window is a sliding window of fixed duration ∆TN , meaning only the
connections observed in the last ∆TN seconds are used as X̄N . Alerts, instead, are grouped to
obtain X̄A using an incremental window with a timeout of ∆TA. The alert window continues
to expand as long as new alerts arrive within ∆TA seconds of the previous one ; each new alert
resets the timeout. Once the timeout is exceeded without new alerts, the window is flushed, under
the assumption that alerts separated by more than ∆TA seconds likely originate from unrelated
incidents. The NIRS R(rt, X̄A, X̄N ) processes the contents of these two windows (X̄A, X̄N ) along
with the current firewall ruleset rt and produces an updated ruleset rt+1.

4.2 Firewall updates via iptables

There are many possible ways of implementing a firewall ruleset to be used and updated by
NIRS. For Linux systems, one of the most natural choices is iptables. iptables is a Linux
utility that controls how network packets are handled by the kernel’s netfilter framework.
One of its key functions is regulating traffic through a set of chains.

Using iptables, two possible implementations of firewall rulesets are possible. The first makes
use of the FORWARD chain, which applies to packets being routed through a system acting as a
router or gateway. By default, this chain accepts all incoming traffic, but stricter control can be
enforced by applying DROP rules, which silently discard packets that match the rule. For example,
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Figure 4.1: Window system used to select samples from X̄A and X̄N in our baseline examples.

a rule like iptables -A FORWARD -s 10.2.0.1 -j DROP blocks all forwarded traffic originating
from source IP 10.2.0.1. Other types of rules targeting destination addresses or specific ports
can be used to prevent communication with certain hosts or services. A second possibility is to
apply firewall rules directly at the host level. In that case, the INPUT and OUTPUT chains should
be used to filter incoming and outgoing packets respectively.

Updating rules at the host level would greatly increase the complexity of the evaluation,
requiring to assess multiple rulesets and have the NIRS update them independently. This solution
is also less practical in a real deployment, as it would require a NIRS to have control on the
ruleset of each individual host. Therefore, the experiments run in this report focus on rt being
applied at the router level via the iptables FORWARD chain.

4.2.1 Assessing rule impact

In order to evaluate NIRS using public datasets, it is necessary to assess the impact of
a dynamically updated ruleset on the traffic of that dataset. In the case of iptables, that
requires to determine which connections are blocked based on the state of the FORWARD chain.
One relatively straightforward way to do so is to replay the traffic stored in PCAP files on a
virtual machine that simulates the router where the firewall rules are applied.

However, there are two major drawbacks in this approach. Firstly, the setup may be complex
and resource demanding. Secondly, the experimental evaluation of a NIRS would be slow. Al-
though tools like tcpreplay allow to speed up the traffic why replaying it, the total time would
be still proportional to the time range of the dataset PCAP files.

A more efficient way to determine whether a connection is affected by the rules in place
consists in using a custom parser. This allows to directly match a connections stored in tabular
format (e.g., as network flows) against a ruleset. Indeed, implementing the parser is also a
challenging task, especially considering the high expressiveness of iptables rules. To reduce
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Description Rule format
Block source IP or subnet -A FORWARD -s <src_ip>[/<subnet>]

-j DROP
Block destination IP or subnet -A FORWARD -d <dst_ip>[/<subnet>]

-j DROP
Block specific protocol for a des-
tination IP/subnet

-A FORWARD -d <dst_ip>[/<subnet>]
-p <protocol> -j DROP

Block specific protocol’s port for
a destination IP/subnet

-A FORWARD -d <dst_ip>[/<subnet>]
-p <protocol> –dport <dst_port> -j
DROP

Table 4.1: Allowed iptables rules formats.

the complexity of rule generation and parsing, the pool of allowable rules was constrained to a
limited set of predefined formats, summarized in Table 4.1.

4.2.2 Rule parser

To match iptables rules with connections, the custom parser first converts the rule to a
JSON representation. For example, the rule

iptables -A FORWARD -d 10.122.2.10 -p tcp --dport 22 -j DROP

is mapped to

{

"option": "-A",

"table": "FORWARD",

"src_ip": "any",

"dst_ip": "10.122.2.10",

"protocol": "tcp",

"src_port": "any",

"dst_port": "22",

"jump": "DROP",

}

The JSON rule is then matched against the relevant fields of a connection. Since the rules in
the FORWARD chain apply to packets in either directions, flows are matched in case at least one
packet in either directions is matched. In other words, the rule above also matches a connection
with src_ip 192.14.2.10, protocol TCP, src_port 22, as long as the number of source-to-
destination bytes in the original flow is > 0. Subnets are parsed as regular IP addresses, but a
different matching function is used, which compares only prefixes.
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Chapitre 5

Experimental results

5.1 Dataset

The dataset selected for NIRS evaluation was chosen to closely mirror the intended deploy-
ment setup. Specifically, datasets where network flows were collected at the router level were
prioritize, since this facilitates matching them against the generated iptables rules. Several
commonly used NIDS datasets (such as CIC-IDS 2017 [15], EdgeIIoTSet [3], and TON-IoT [9])
were deemed unsuitable for this use case. In CIC-IDS 2017, traffic is captured at the host level
within a private subnet behind a NAT, and external attacks are recorded as originating from the
router’s IP address rather than the true source. While it is trivial to map internal private IPs
to public ones, identifying the correct external attacker IPs that should replace the router IP is
non-trivial. Similar issues are present in EdgeIIoTSet, where traffic is also collected individually
at the host level. In the case of TON-IoT, all hosts are connected through a vSwitch within the
same subnet, making the application of iptables for routing-based mitigation infeasible.

Instead, the UNSW-NB15 dataset [10] – also widely used in the NIDS literature – was even-
tually selected. In UNSW-NB15, traffic is captured by a router, monitoring interactions across
three main subnets : subnet 1 (59.166.0.0/24) and subnet 3 (149.171.126.0/24) generate normal
traffic, while attacks originate from subnet 2 (175.45.176.0/24). These subnets exchange traf-
fic among themselves and with other hosts through two routers, (linking subnets 10.40.85.0/24
and 10.40.182.0/24), one of which is used to capture traffic. Our experimental evaluation as-
sumes router 1 is a Linux machine acting as router, which is also running a NIRS instance to
dynamically update the iptables FORWARD chain.

5.2 Hyperparameters

The practical implementation of NIRS requires to define a number of hyperparameters that
determine how rules are selected and how often the ruleset rt is updated.
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Figure 5.1: Setup used to collect UNSW-NB15 [10].

Hyperparameter Value
Normal-traffic window size ∆TN 10min
Alert window timeout ∆TA 1min
Interval between NIRS updates ∆t 30min
Max number of rules per ruleset nrules 10

Table 5.1: Hyperparameters used in our evaluation of the baseline NIRS.

In all the experiments reported below, each ruleset update includes either zero or one addi-
tional rules. Each new rule is appended to the FORWARD chain. The case where no rule is added
happens when the NIRS generates an invalid rule. To prevent an excessive growth of the ruleset,
a cap of nrules rules is enforced ; when this threshold is exceeded, the oldest rule is discarded.
The iptables rules should be enforced on Linux machines that are used as firewalls.

Ruleset updates are performed at a constant rate, every ∆t seconds. A lower value of ∆t

implies more timely rule updates, but also more frequent changes of the ruleset. The time range
∆TN of the normal traffic window and the alert window timeout ∆TA are also hyperparameters
that can affect NIRS performance. These hyperparameters were fixed in all experiments to the
values shown in Table 5.1.

5.3 Heuristic-based NIRS R1

The first implementation of NIRS tested in this work relies on simple heuristics. More spe-
cifically, the core idea is to simply block the IP address that caused most alerts.

This can be accomplished by having the NIRS produce at each update a rule of the form

-A FORWARD -s {{src_ip}} -j DROP
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Figure 5.2: TPR versus φ.

The src_ip is selected as the most frequent IP among the alerts X̄A. However, since alerts may
include false positives, the rule should also block a limited amount of benign traffic. Therefore,
a threshold ε = 0.01 is set for the occurrence of src_ip in the set of benign connections X̄N .
If that limit is exceeded for the most frequent IP address in the alert window, the second most
frequent IP is selected, and so on.

5.3.1 Ideal NIDS D∗

The first experiment performed to assess R1 aims to evaluate the NIRS under ideal condi-
tions. Specifically, Algorithm 1 was executed while simulating a perfect NIDS D∗. This is done
by assigning the correct labels to all connections, with no false positives or false negatives.
This allows to isolate and evaluate the rule-generation and enforcement capabilities of the NIRS
without interference from detection errors. Under these assumptions, R1 exhibited strong per-
formance in terms of CBR and WBR, successfully mitigating the majority of malicious traffic. It
generated rules that blocked the IP addresses of each attacker from the subnet 175.45.176.0/24.
However, it also incorrectly blocked the IP address 149.171.126.12, which was a legitimate host
that happened to be under attack and not generating benign traffic at the time of rule creation.
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5.3.2 Random forest NIDS Dφ
In the second experiment, the ideal NIDS was replaced with a real ML-based NIDS Dφ.

Specifically, a random forest classifier was trained on the first 30% of the connections. The
random forest comprised 100 trees with maximal depth 10, a common choice of hyperparameters
for this type of model. To provide an unbiased evaluation, the 30% of the data used for training
was excluded from the evaluation when calculating TPR, CBR, and WBR.

A crucial part of this assessment consisted in measuring how much the TPR/FPR tradeoff
of a NIDS affects NIRS performance. To do so, instead of using the Random Forest predicted
labels directly, probability value pi was extracted for each connection xi derived from its Gini
impurity. By setting a threshold θ to these probabilities, it is possible to enforce specific FPR
caps and move across different points of the NIDS receiver operating characteristic (ROC) curve.
Experiments were performed for φ = 10−4, 10−3, 10−2, 10−1 and repeated over 5 trials, each
initialized with a PRNG seed corresponding to the trial number to ensure reproducibility. As
shown in Fig. 5.2, the true positive rate (TPR) of the NIDS increases as φ increases, following
the expected ROC curve pattern. The optimal operating point appears to be near φ = 10−2,
where the TPR saturates to 1.

Due to the use of a fixed temporal split, the TPR variance across trials remains minimal ;
however, the actual connections labeled as benign or malicious vary, causing downstream effects
on the NIRS performance. These variations notably impact R1, as illustrated in Fig. 5.3. Since
R1 operates under a constraint to block less than 1% of the normal window X̄N , false negatives
can significantly reduce its CBR. The CBR remained below 60% across all trials. On the other
hand, this conservative approach consistently maintained a low WBR, staying under 8%. A
different tradeoff can be achieved by increasing ε. However, some brief experimentation with
larger ε values (e.g., ε = 0.1) revealed that this leads to blocking a large fraction of benign
traffic, which in a real-world deployment would disrupt regular operations.

5.3.3 Lessons learned

This baseline NIRS implementation reveals that, as one would expect, it is difficult to achieve
effective rule generation via heuristic approaches. While it would be possible to try different
rule patterns – e.g., by blocking specific dst_ip:port or dst_ip/protocol combinations – this
would increase the search space and problem complexity. Such a result is not surprising : in most
problems that are based on pattern recognition (in this case, finding common patterns in alert
windows), it is hard to encode human intuition into effective heuristics. This suggests the need
to use machine learning for rule generation. In contrast to “hand-crafted” heuristics, machine
learning approaches learn patterns based on a set of provided examples. This typically allows
them to effectively replicate patterns that are normally easily identified by humans but that are
difficult to transpose into algorithms.
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5.4 LLM-based NIRS R2

Since heuristic approaches seem to be limited in their effectiveness, the next NIRS baseline
implementation was machine learning-based. Among the various possible choices available, large
language models (LLMs) were identified as the most prominent one for iptables rule generation.
More, specifically, open-weights LLMs like Llama or Qwen are pretrained on large corpi of textual
data, allowing them to answer questions related to various topics, including computer networks,
security, and firewalls. This makes them directly useable without need for additional training.

The second baseline evaluated in this work, R2, relied on an LLM that has access to X̄A

and X̄N . The LLM is prompted to produce one iptables rule at every call, using the template
shown in fig. 5.4. The template is divided in a “system prompt,” which is set when the LLM is
initialized, and a “user prompt,” which changes at every LLM call (once per NIRS update).

Since LLMs are limited by their context window (the number of tokens that an LLM is able
to process at once), it is not feasible to feed an LLM the windows X̄A and X̄N in their entirety.
Instead, only the last kA = 10 alerts and kN = 10 benign flows are added to the prompt. Also,
LLMs can make mistakes while generating iptables rules. These can result in rules that are
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R2 prompts

System prompt : You are a network security engineer. You are tasked with monitoring incoming
malicious and benign traffic, and writing one iptables rule accordingly. You will observe examples
of benign flows and malicious flows. You will also have access to the current iptables status.
Based on this information, you will write one single iptables rule, which should be enclosed within
<rule></rule> tags. Output only one iptables DROP rule to append to the FORWARD table.
The rule must block most of the malicious flows and must not block most of the benign flows.
Valid formats for the rule include :
{{accepted_formats}}
DO NOT USE RULES WITH DIFFERENT FORMATS. The /<subnet> is optional. Examples
of valid rules :
{{few_shot_examples}}
............................................................................................................................................
User prompt : Malicious flows :
{{malicious_flows}}
Benign flows :
{{benign_flows}}
Iptables status :
{{iptables_status}}

Figure 5.4: System and user prompt formats used for R2.

ineffective or syntactically invalid. To handle the latter case, the iptables parser introduced in
§4.2 is also used as rule validator. If a generated rule is invalid, the ruleset is kept at its current
state (i.e., rt+∆t = rt).

5.4.1 Preliminary LLM testing

Before proceeding with the implementation of R2, preliminary tests were performed on open-
weights models, testing their reliability in responding to the system and user prompts defined
above. Reasoning models such as deepseek-r1:8b and qwen3:8b often exhibited undesirable
behavior, including excessive generation loops during rule synthesis. While qwen2.5:7b was
able to produce syntactically valid iptables rules, it frequently failed to follow the required
encapsulation format, substituting quotes in place of the specified <rule></rule> tags.

Ultimately, llama3:8b was selected due to its reliable formatting and overall consistency.
The model managed to generate correctly formatted rules with reasonable latency without fine-
tuning. Additionally, we confirmed that the model has inherent knowledge of iptables, as we
were able to generate valid rules without providing examples.

The average rule generation time (including text generation and rule parsing) was ≈ 1.6

seconds on an Nvidia GTX 2080 Ti GPU. When no rule is in place, the iptables status is set
to [Empty]. Otherwise, it displays the current list of rules.
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5.4.2 Ideal NIDS D∗

When repeating the ideal NIDS experiment,R2 immediately blocked the entire 175.45.176.0/24
subnet that includes all the attacking IP addresses. An example of output generated by llama3:8b
is as follows :

<rule>-A FORWARD -s 175.45.176.0/24 -j DROP</rule>

This rule blocks all traffic from the malicious IP range

(175.45.176.0/24) to any destination, effectively blocking

most of the malicious flows while allowing benign traffic

to pass through.

This strategy yielded a high CBR of 97.55% while maintaining a relatively low WBR of
1.67%, showing promising results for LLM-driven intrusion response under perfect NIDS alerts.

5.4.3 Random forest NIDS Dφ
While R1 allows to only block one IP at a time, the LLM-based R2 allows broader mitigation

actions, such as blocking entire subnets. This type of action appears to be the most frequently
chosen by the LLM, likely to capture multiple address within the alert window.

While this strategy enabled a high CBR (ranging between 85% and 91%), it also disrupted
around 45% of benign connections, making this NIRS unusable in real-world applications. At-
tempts to reduce this over-blocking through negative prompting (e.g., explicitly instructing the
model not to block traffic from 59.166.0.0/24 ; or by warning it about the risk of false positives)
were ineffective.

5.4.4 Example of LLM hallucinations

Besides its general tendency to produce broad rules, R2 exhibited hallucination behavior,
claiming in multiple instances to block a single IP address while actually generating rules that
blocked whole subnets. This bias toward subnet-level blocking may be attributed to the examples
of iptables rules observed by llama3:8b during training. An example of such allucinations is
the following :

<rule>-A FORWARD -s 59.166.0.3/24 -j DROP</rule>

This rule blocks traffic from IP address 59.166.0.3, which

is the source IP address for all malicious flows.

This should block most of the malicious traffic while

allowing benign traffic to pass through.
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Figure 5.5: Correct Block Rate (CBR) and Wrong Block Rate (WPR) versus φ for R1 (left)
and R2 (right).

While the the output claims that this rule only blocks 59.166.0.3, iptables prioritizes netmasks,
meaning that this rule blocks any IP in the 59.166.0.0/24 subnet.

5.4.5 Result analysis

Figure 5.6 compares the TPR and the resulting CBRs for R1 and R2 on different types of
attack for φ = 0.1. Notably, even for low TPR values, the NIRS were often still able to block
most of the malicious flows, as long as a sufficient number of alerts were generated. However,
this effectiveness is also caused by the attack originating from a small address space. Further
experimentation is required to understand how the NIRS perform against distributed attacks,
where malicious activity may be spread across a wide range of sources [4], potentially diminishing
the CBR.

5.4.6 Resilience to adversarial attacks

Any application that implements LLM-based decision making, especially when these can
affect critical aspects of a system, potential exploitation (e.g., via prompt injection[8]) should be
considered. In the case of NIRS, the risk can be effectively mitigated by adopting a predefined
prompt template as done for R2. Since the only external inputs are numerical indicators or other
objective information (such as IP addresses or protocols), there is no
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Figure 5.6: CBR by attack for φ = 0.1.
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Conclusion

This project identified and addressed research gaps in the intrusion response literature. To
address these gaps, it introduced the concept of network intrusion response systems (NIRS),
designed to transform IDS alerts into firewall/IPS rules. Along with the NIRS definition, an
evaluation approach was proposed and implemented to leverage existing IDS datasets, tackling
the longstanding problem of ad hoc and non-standardized testbeds in intrusion response research.

Two baseline NIRS, R1 and R2, were implemented and evaluated on UNSW-NB15. The first
utilized a conservative blocking strategy that maintained low collateral damage (less than 8% of
benign traffic disrupted) but achieved only moderate coverage, with correct block rate (CBR)
under 60%. The LLM-based NIRS (R2) demonstrated much higher coverage (85-91% CBR) but
frequently blocked legitimate traffic, with 45% wrong block rate (WBR).

Overall, the findings listed in this report allow to draw the following conclusions :
— The proposed definition and evaluation methodology effectively allow to analyze NIRS

solutions.
— While neither of the two NIRS achieve high performance in terms of CBR/WBR tradeoff,

they represent a preliminary step towards effective network-level response.
— The knowledge embedded in open-weights foundation LLMs such as Llama can be levera-

ged to translate NIDS alerts into firewall rules without additional training or fine-tuning.
Even a simple implementation such as R2 can provide effective mitigation when the
underlying NIDS is accurate enough.

— A number of challenges have been identified for LLM-based NIRS implementations : one
is the need for more complex workflows to guide the LLM reasoning during the rule ge-
neration process ; another is enforcing LLM compliance with network specific constraints
(e.g., compliance with negated prompting “Do not block critical network 59.166.0.3/24”).

The methodology and results described in this report are all reproducible using the code
available at the following Github repository : https://github.com/thomasmarchioro3/NIRS.

Future work

While some important gaps have been addressed, new challenges emerged that could not be
tackled within the scope of this project. LLM-based network intrusion response appears to be
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promising, but improving their workflow is paramount to achieve effective attack mitigation and
avoid service disruption. More specifically, future work should focus on integrating LLMs with
tools for assessment and validation of generated rules (before the firewall/IPS is updated). Ad-
ditionally, the problem of compliance with negated prompting should be addressed. Preliminary
experiments revealed that fine-tuning via direct preference optimization (DPO) strongly can be
used to improve the model understanding of negated prompting. These results should be further
validated via systematic experiments.

The limitations of the setup used in the experiments should also be considered. While
iptables provides a concrete implementation of firewall rulesets, it makes the analysis limi-
ted to setups that fit this implementation. For this reason, many public datasets could not be
used in the NIRS evaluation. More flexible rule formats, such as the unified defense rule proposed
in [18], could be used to fully leverage the wealth of available IDS datasets.
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